Identification of Aflatoxigenic Fungi in Myristica fragrans using V8 and CAM Media

Fitri Arifah, Luqman Qurata Aini, Anton Muhibuddin, Sylvia Dianti, Matheus Randy Prabowo

Abstract


Nutmeg is a spice that might be susceptible to being infected with aflatoxigenic fungi. Aflatoxins are mycotoxins synthesized by certain strains of Aspergillus section Flavi. However, not all strains are able to produce aflatoxins. The approach frequently employed for this survey comprises the cultivation of strains in a suitable liquid or solid medium and their subsequent extraction and analysis for the presence of aflatoxins. To date, very few studies have been conducted on the identification of contaminate and aflatoxigenic fungi in Myristica fragrans. Therefore, this study aimed to identify the contaminate and aflatoxigenic fungi in Myristica fragrans growing on V8 and CAM Media. Isolation of the fungus was carried out by direct agar plating. Lasiodiplodia theobromae, Aspergillus niger, A. tamarii, Penicillium citrinum, Rhizopus delemar, A. nomiae, and A. aflatoxiformans were recovered from nutmeg kernels sampled from North Minahasa, North Sulawesi, Indonesia. The findings of fungal isolation demonstrated that L. theobromae was the most prevalent form of fungus detected in the nutmeg kernels (50%), followed by A. niger (38.13%) and A. tamarii (10%). A. nomiae and A. aflatoxiformans were the aflatoxigenic fungi isolated from M. fragrans kernels.

Keywords


Myristica fragrans; aflatoxigenic fungi; Aspergillus spp.

Full Text:

PDF

References


Alcaide-Molina, M., Ruiz-Jiménez, J., Mata-Granados, J. M., & Luque de Castro, M. D. (2009). High through-put aflatoxin determination in plant material by automated solid-phase extraction on-line coupled to laser-induced fluorescence screening and determination by liquid chromatography–triple quadrupole mass spectrometry. Journal of Chromatography A, 1216(7), 1115–1125. https://doi.org/10.1016/j.chroma.2008.12.049

Baquião, A. C., de Oliveira, M. M. M., Reis, T. A., Zorzete, P., Diniz Atayde, D., & Correa, B. (2013). Polyphasic approach to the identification of Aspergillus section Flavi isolated from Brazil nuts. Food Chemistry, 139(1–4), 1127–1132. https://doi.org/10.1016/j.foodchem.2013.01.007

Barnett, H. L., & Hunter, B. B. (1998). llustrated Genera of Imperfect Fungi (4th Edition). APS Press.

Chang, P.-K., & Hua, S.-S. T. (2007). Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Letters in Applied Microbiology, 44(2), 131–137. https://doi.org/10.1111/j.1472-765X.2006.02056.x

Cucci, C., Mignani, A. G., Dall’Asta, C., Pela, R., & Dossena, A. (2007). A portable fluorometer for the rapid screening of M1 aflatoxin. Sensors and Actuators B: Chemical, 126(2), 467–472. https://doi.org/10.1016/j.snb.2007.03.036

Davis, N. D., Iyer, S. K., & Diener, U. L. (1987). Improved method of screening for aflatoxin with a coconut agar medium. Applied and Environmental Microbiology, 53(7), 1593–1595. https://doi.org/10.1128/aem.53.7.1593-1595.1987

Faulkner, A. G. 2014. Aflatoxins: food sources, occurrence and toxicological effects. Nova Publishers.

Febbiyanti, T. R., Wiyono, S., Yahya, S., & Widodo. (2018). Lasiodiplodia theobromae fungus causing stem canker disease on rubber tree (Hevea brasiliensis) in Indonesia. Journal of Agronomy, 18(1), 41–48. https://doi.org/10.3923/ja.2019.41.48

Fente, C. A., Ordaz, J. J., Vázquez, B. I., Franco, C. M., & Cepeda, A. (2001). New Additive for Culture Media for Rapid Identification of Aflatoxin-Producing Aspergillus Strains. Applied and Environmental Microbiology, 67(10), 4858–4862. https://doi.org/10.1128/AEM.67.10.4858-4862.2001

Frisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., & Houbraken, J. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology, 93, 1–63. https://doi.org/10.1016/J.SIMYCO.2018.06.001

Henuk, J. B. D., Sinaga, M. S., & Hidayat, S. H. (2017). Morphological and molecular identificationof fungal pathogens causing gummosis disease of Citrus spp. in Indonesia. Biodiversitas Journal of Biological Diversity, 18(3), 1100–1108. https://doi.org/10.13057/biodiv/d180330

Khan, R., Mohamad Ghazali, F., Mahyudin, N. A., & Samsudin, N. I. P. (2020). Morphological Characterization and Determination of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus Isolated from Sweet Corn Kernels and Soil in Malaysia. Agriculture, 10(10), 450. https://doi.org/10.3390/agriculture10100450

Klich, M. A. (2002). Identification of Common Aspergillus species. The Centraalbureau voor Schimmelcultures.

Kong, W.-J., Liu, S.-Y., Qiu, F., Xiao, X.-H., & Yang, M.-H. (2013). Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid–liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection. The Analyst, 138(9), 2729. https://doi.org/10.1039/c3an00059a

Kuete, V. (2017). Myristica fragrans: A Review. In Medicinal Spices and Vegetables from Africa (pp. 497–512). Elsevier. https://doi.org/10.1016/B978-0-12-809286-6.00023-6

Okayo, R. O., Andika, D. O., Dida, M. M., K’otuto, G. O., & Gichimu, B. M. (2020). Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/8854718

Salman, A. B. A., Sudirman, L. I., & Nandika, D. (2020). Selection of stain fungi on rubberwood (Hevea brasiliensis) and its growth response against chitosan. Biodiversitas, 21(10), 4501–4508. https://doi.org/10.13057/biodiv/d211005

Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78(1), 141–173. https://doi.org/10.1016/j.simyco.2014.07.004

Sandra, F. K., Nurhasanah, Y. S., Mutaqin, K., Wiyono, S., & Tondok, E. T. (2021). Keragaman morfologi dan molekuler Lasiodiplodia theobromae dari tanaman jeruk, kakao, karet, manggis, dan pisang. Jurnal Fitopatologi Indonesia, 17(2), 58–66. https://doi.org/10.14692/jfi.17.2.58-66

Smeesters, L., Meulebroeck, W., Raeymaekers, S., & Thienpont, H. (2015). Optical detection of aflatoxins in maize using one- and two-photon induced fluorescence spectroscopy. Food Control, 51, 408–416. https://doi.org/10.1016/j.foodcont.2014.12.003

Susanna, S., Sinaga, M. S., Wiyono, S., & Triwidodo, H. (2020). Diagnosis of dieback disease of the nutmeg tree in Aceh Selatan, Indonesia. Walailak Journal of Science and Technology, 17(8), 801–810. https://doi.org/10.48048/wjst.2020.4379

Varga, J., Frisvad, J. C., & Samson, R. A. (2011). Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology, 69, 57–80. https://doi.org/10.3114/sim.2011.69.05

Vazquez, M. L., Cepeda, A., Prognon, P., Mahuzier, G., & Blais, J. (1991). Cyclodextrins as modifiers of the luminescence characteristics of aflatoxins. Analytica Chimica Acta, 255(2), 343–350. https://doi.org/10.1016/0003-2670(91)80066-3

Wei, C.-I., Swartz, D. D., & Cornell, J. A. (1985). Effects of Culture Media, Exposure Time and Temperature on Near-Ultraviolet-Induced Sporulation of Alternaria alternata. Journal of Food Protection, 48(4), 316–319. https://doi.org/10.4315/0362-028X-48.4.316




DOI: https://doi.org/10.21776/ub.rjls.2022.009.03.3

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.