Potential Analysis of Lemna sp. Extract as Immunostimulant to Increase Non-Specific Immune Response of Tilapia (Oreochromis niloticus) against Aeromonas hydrophila

Eric Armando, Ayu Lestiyani, R. Adharyan Islamy


Lemna sp. is known to have several bioactive compounds and polysaccharide macromolecules that can function as immunomodulators to affect non-specific immune responses to increase the body's resistance to pathogens. This study aims to determine the potential of catfish eye extract as an immunostimulant by observing non-specific tilapia immune parameters. The extraction method used was 96% ethanol maceration for 2 days with a ratio of 1: 4. The experimental design used a Completely Randomized Design with 5 treatments (doses 0.2, 0.4, 0.6 mg/kg, control + and control -) and 3 replications. The non-specific parameters of immunity observed included total plasma protein (Bradford method), superoxide dismutase and lysozyme activity. The data obtained will be analyzed using ANOVA, if there is a significant difference, it will be further tested with Duncan Multiple. Range Test (DMRT). The results showed that the highest total plasma protein was found in treatment C (giving an extract of 0.3 mg/kg body weight) with an average total plasma protein after 12 days of maintenance of 4.99 g / dL. The extract dose of 0.3 mg/body weight showed a rapid decrease in SOD and increase Lysozyme activity.


Immunostimilant; Immune Response; Lemna sp.; Tilapia

Full Text:



Aguilera Morales, M., Canales Martinez, M., Avila Gonzalez, E., & Flores Ortiz, C. (2018). Nutrients and bioactive compounds of the Lemna gibba and Ulva lactuca as possible ingredients to functional foods. Latin American Journal of Aquatic Research, 46(4), 709–716. https://doi.org/10.3856/vol46-issue4-fulltext-8

Awad, E., & Awaad, A. (2017). Role of medicinal plants on growth performance and immune status in fish. Fish & Shellfish Immunology, 67, 40–54. https://doi.org/10.1016/j.fsi.2017.05.034

Deivasigamani, B., & Subramanian, V. (2016). Applications of Immunostimulants in Aquaculture: A Review. International Journal of Current Microbiology and Applied Sciences, 5(9), 447–453. https://doi.org/10.20546/ijcmas.2016.509.048

Chang, C. C., Tan, H. C., & Cheng, W. (2013). Effects of dietary administration of water hyacinth (Eichhornia crassipes) extracts on the immune responses and disease resistance of giant freshwater prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunology, 35(1), 92–100. https://doi.org/10.1016/j.fsi.2013.04.008

Ellis, A. E. (1990) Lysozyme Assays. In: Stolen, J.S., Fletcher, T.C., Anderson, D.P., Roberson, B.S. and Van Muiswinkel, W.B., Eds., Techniques in Fish Immunology Fair Haven, SOS Publications, Fair Haven, 101-103

Engstad, R. E., Robertsen, B., & Frivold, E. (1992). Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish & Shellfish Immunology, 2(4), 287–297. https://doi.org/10.1016/s1050-4648(06)80033-1

FAO. (2019). The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction. Food & Agriculture Organization.

Gómez-Anduro, G. A., Ascencio-Valle, F., Peregrino-Uriarte, A. B., Cámpa-Córdova, A., & Yepiz-Plascencia, G. (2012). Cytosolic manganese superoxide dismutase genes from the white shrimp Litopenaeus vannamei are differentially expressed in response to lipopolysaccharides, white spot virus and during ontogeny. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 162(4), 120–125. https://doi.org/10.1016/j.cbpb.2012.03.003

Gyunter, E. A., Popeiko, O. V., & Ovodov, Y. S. (2008). Production of polysaccharides by callus cultures of common duckweed. Applied Biochemistry and Microbiology, 44(1), 104–109. https://doi.org/10.1134/s0003683808010183

Haggag, Y., Samaha, H., Nossair, M., & Mohammad, A. (2017). Prevalence of Dermatophytosis in some animals and Human in Behera Province, Egypt. Alexandria Journal of Veterinary Sciences, 53(2), 64. https://doi.org/10.5455/ajvs.203688

Hai, V. N. (2015). The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture, 446, 88–96. https://doi.org/10.1016/j.aquaculture.2015.03.014

Hastuti, S. D. (2012). Supplementation of β-glucan from baker's yeast (Saccharomyces cerevisiae) in diet on the phagocytic activity, NBT activity, total of protein plasm and agglutination activity of nile tilapia blood (Orechromis niloticus). DEPIK Jurnal Ilmu-Ilmu Perairan, Pesisir Dan Perikanan, 1(3), 149–155. https://doi.org/10.13170/depik.1.3.102

Insani, L., Hasan, V., Valen, F. S., Pratama, F. S., Widodo, M. S., Faqih, A. R., ... & Isroni, W. (2020). Presence of the invasive nile tilapia Oreochromis niloticus Linnaeus, 1758 (Perciformes, Cichlidae) in the Yamdena Island, Indonesia. Ecol Environ Conserv, 26(3), 1115-1118.

Islamy, R. A. (2017). Pengaruh Flavonoid Rumput Laut Coklat (Sargassum sp.) Terhadap Hematologi, Mikronuklei dan Histologi Pada Ikan Nila (Oreochromis niloticus) Setelah Dipapar Pestisida Berbahan Aktif Metomil (Doctoral dissertation, Universitas Brawijaya).

Islamy, R. A. Antibacterial Activity of Cuttlefish Sepia sp. (Cephalopoda,) Ink Extract Against Aeromonas hydrophila. Majalah Obat Tradisional, 24(3), 184-188

Islamy, R. A., Yanuhar, U., & Hertika, A. M. S. (2017). Assessing the Genotoxic Potentials of Methomyl-based Pesticide in Tilapia (Oreochromis niloticus) Using Micronucleus Assay. The Journal of Experimental Life Science, 7(2), 88-93

Isnansetyo, A., Fikriyah, A., Kasanah, N., & Murwantoko. (2015). Non-specific immune potentiating activity of fucoidan from a tropical brown algae (Phaeophyceae), Sargassum cristaefolium in Tilapia (Oreochromis niloticus). Aquaculture International, 24(2), 465–477. https://doi.org/10.1007/s10499-015-9938-z

Kilawati, Y., & Islamy, R. A. (2019). The Antigenotoxic Activity of Brown Seaweed (Sargassum sp.) Extract Against Total Erythrocyte and Micronuclei of Tilapia Oreochromis niloticus Exposed by Methomyl-Base Pesticide. The Journal of Experimental Life Science, 9(3), 205-210

Kilawati, Y., & Islamy, R. A. (2021). Immunostimulant Activity of Gracilaria sp. and Padina sp. on Immune System of Vannamei Shrimp (Litopenaeus vannamei) Against Vibrio harveyi. Journal of Aquaculture and Fish Health, 10(2), 252-257

Lie, Evensen, Sørensen, A., & Frøysadal, E. (1989). Study on lysozyme activity in some fish species. Diseases of Aquatic Organisms, 6, 1–5. https://doi.org/10.3354/dao006001

Matsuyama, H., Mangindaan, R. E., & Yano, T. (1992). Protective effect of schizophyllan and scleroglucan against Streptococcus sp. infection in yellowtail (Seriola quinqueradiata). Aquaculture, 101(3–4), 197–203. https://doi.org/10.1016/0044-8486(92)90023-e

Ministry of Maritime Affairs and Fisheries of the Republic of Indonesia. (2018). Laporan Kinerja Direktorat Jenderal Perikanan Budidaya 2018. https://kkp.go.id/an-component/media/upload-gambar-pendukung/DJPB/Lkj%20DJPB%202018.pdf

Parry, R. M., Chandan, R. C., & Shahani, K. M. (1965). A Rapid and Sensitive Assay of Muramidase. Experimental Biology and Medicine, 119(2), 384–386. https://doi.org/10.3181/00379727-119-30188

Ramadhani, A., Muchlisin, Z. A., Sarong, M. A., & Batubara, A. S. (2017). Hubungan panjang berat dan faktor kondisi ikan kerapu Famili Serranidae yang tertangkap di Perairan Pulo Aceh Kabupaten Aceh Besar, Provinsi Aceh. Depik, 6(2), 112–121. https://doi.org/10.13170/depik.6.2.7017

Sahan, A., & Duman, S. (2010). Influence of β-1,3/1,6 glucan applications on some non-specific cellular immune response and haematologic parameters of healthy Nile tilapia (Oreochromis niloticus L., 1758). Tubitak, 34(1), 75–81.

Siwicki, A. K., Anderson, D. P., & Rumsey, G. L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology and Immunopathology, 41(1–2), 125–139. https://doi.org/10.1016/0165-2427(94)90062-0

Smith, V. J., Brown, J. H., & Hauton, C. (2003). Immunostimulation in crustaceans: does it really protect against infection? Fish & Shellfish Immunology, 15(1), 71–90. https://doi.org/10.1016/s1050-4648(02)00140-7

Swain, P., & Nayak, S. (2009). Role of maternally derived immunity in fish. Fish & Shellfish Immunology, 27(2), 89–99. https://doi.org/10.1016/j.fsi.2009.04.008

Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinární Medicína, 56(10), 486–503. https://doi.org/10.17221/3294-vetmed

Vadstein, O. (1997). The use of immunostimulation in marine larviculture: possibilities and challenges. Aquaculture, 155(1–4), 401–417. https://doi.org/10.1016/s0044-8486(97)00114-2

Vallejos-Vidal, E., Reyes-López, F., Teles, M., & MacKenzie, S. (2016). The response of fish to immunostimulant diets. Fish & Shellfish Immunology, 56, 34–69. https://doi.org/10.1016/j.fsi.2016.06.028

Wang, W., Sun, J., Liu, C., & Xue, Z. (2016). Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquaculture Research, 48(1), 1–23. https://doi.org/10.1111/are.13161

Zhao, X., Moates, G., Wellner, N., Collins, S., Coleman, M., & Waldron, K. (2014). Chemical characterization and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydrate Polymers, 111, 410–418. https://doi.org/10.1016/j.carbpol.2014.04.079

DOI: https://doi.org/10.21776/ub.rjls.2021.008.01.6


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.