Indigenous Endophytic Bacteria Potentials to Control Black Rot Disease on Cabbage Towards the Development of Organic Vegetables

Verisca Agil Winanda Santoso, Fatchuliani Safitri Ramadhani, Aliffia Nuraita Apriyani, Luqman Qurata Aini


Organic farming plays an important role in achieving SDGs 2030, especially on point 2, 3, 13 and 15. Nevertheless, agriculture commodity often meets challenges in organic farming due to plant pests, for instance: on cabbage. Black rot disease on cabbage causes serious losses up to 70%. Most of farmers use chemical pesticides which leads to lots of negative impact towards the environment. Thus, its essential to control the environmentally friendly by applying bio control agents of indigenous endophyte bacteria instead. This article was aimed to examine the indigenous endophyte bacteria ability which excellences on organic cabbage as well as generating black rot caused by the bacterial pathogen X. campestris. Narrative reviews along was done through finding out the related material from International Journal articles. The result showed that there were indigenous endophyte bacteria which was able to be bio control agents towards black rot disease on cabbage, namely Pseudomonas fluorescens, Bacillus subtilis, and Streptomyces sp with effectivity level between 37-63% within resistance zone 1.44 up to 2.4 cm. Indigenous endophyte bacteria on organic cabbage had various kinds antagonist agents especially on Bacillus sp. and Pseudomonas sp. that able to resist the disease pathogen both in vitro and in vivo.


Antagonist Agents; Brassicaceae; Endophyte Bacteria.

Full Text:



Cui, W., He, P., Munir, S., He, P., He, Y., Li, X., Yang, L., Wang, B., Wu, Y., & He, P. (2019). Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Frontiers in Microbiology, 10(JUL), 1-12.

Fahmi, M. F. I., Budiharjo, A., & Suprihadi, A. (2014). Potential Rhizobacteria of Getasan Semarang Cabbage Plant (Brassica oleracea var. capitata L.) as a Biobacterisida to Xanthomonas campestris. Biology Journal, 3(3), 53-64.

Gadhave, K. R., Devlin, P. F., Ebertz, A., Ross, A., & Gange, A. C. (2018). Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. Microbial Ecology, 76(3), 741–750.

Haggag, W. M., & Mohamed, H. A.-L. A. (2007). Biotechnological Aspects of Microorganisms Used in Plant Biological Control. American-Eurasian Journal of Sustainable Agriculture, 1(1), 7-12.

Hasani, A., Kariminik, A., & Isaazadeh, K. (2014). Streptomycetes : Characteristics and Their Antimicrobial Activities. International Journal of Advanced Biological and Biomedical Research, 2(1), 63-75.

Haque, M. A., Lee, J. H., & Cho, K. M. (2015). Endophytic bacterial diversity in Korean kimchi made of Chinese cabbage leaves and their antimicrobial activity against pathogens. Food Control, 56, 24-33.

Haque, M. A., Yun, H. D., & Cho, K. M. (2016). Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens. Journal of Microbiology, 54(5), 353-363.

Krauthausen, H. J., Laun, N., & Wohanka, W. (2011). Methods to reduce the spread of the black rot pathogen, Xanthomonas campestris pv. campestris, in brassica transplants. Journal of Plant Diseases and Protection, 118(1), 7–16.

Lee, S. O., Choi, G. J., Choi, Y. H., Jong, K. S., Park, D. J., Kim, C. J., & Kim, J. C. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. Journal of Microbiology and Biotechnology, 18(11), 1741-1746.

Luna, C. L., Mariano, R. L. R., & Souto-Maior, A. M. (2002). Production of a biocontrol agent for crucifers black rot disease. Brazilian Journal of Chemical Engineering, 19(2), 133-140.

Mandiriza, G., Kritzinger, Q., & Aveling, T. A. S. (2018). The evaluation of plant extracts, biocontrol agents and hot water as seed treatments to control black rot of rape in South Africa. Crop Protection, 114, 129-136.

Marwoto, B., -, H., -, H., & Muharam, A. (2013). Compatibility of Bacillus subtilis, Pseudomonas fluorescens and Tricho-derma harzianum in controlling Ralstonia solanacearum in potatoes. Jurnal Hortikultura, 22(2), 173-180.

Mishra, S., & Arora, N. K. (2012). Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biological Control, 61(1), 32-39.

Nuñez, A. M. P., Rodríguez, G. A. A., Monteiro, F. P., Faria, A. F., Silva, J. C. P., Monteiro, A. C. A., Carvalho, C. v., Gomes, L. A. A., Souza, R. M., de Souza, J. T., & Medeiros, F. H. V. (2018). Bio-based products control black rot (Xanthomonas campestris pv. campestris) and increase the nutraceutical and antioxidant components in kale. Scientific Reports, 8(1), 1-11.

Oentoro, Samuel. (2012). Smart Eating. Jakarta: Gramedia.

Ombuna, G. (2019). Control of black rot disease in cabbage by integration of mulching, pruning and hot water treatment of seeds. Plant Pathology & Quarantine, 9(1), 23-29.

Pratama, T., Suastika, G., & Nurmasyah, A. 2016. The Impact of Plant Disease to Cruciferous Vegetables Farmer’s Income in Agropolitan Area of Cianjur Regency, West Java. J. Fitopatologi Indonesia, 12(6), 218-223.

Scialabba, N. E. H., & Mller-Lindenlauf, M. (2010). Organic agriculture and climate change. In Renewable Agriculture and Food Systems, 25(2):158-169.

Singh, D., Dhar, S., & Yadav, D. K. (2010). Effect of endophytic bacterial antagonists against black rot disease of cauliflower caused by Xanthomonas campestris pv. campestris. In Indian Phytopath, 63(2), 122-126.

Statistics Indonesia. (2018). Statistics of seasonal vegetable and fruit plants. BPS RI. Jakarta.

Stein, T., Düsterhus, S., Stroh, A., & Entian, K. D. (2004). Subtilosin Production by Two Bacillus subtilis Subspecies and Variance of the sbo-alb Cluster. Applied and Environmental Microbiology, 70(4), 2349-2353.

Suárez-Estrella, F., Ros, M., Vargas-García, M. C., López, M. J., & Moreno, J. (2014). Control of Xanthomonas campestris pv. vesicatoria using agroindustrial waste-based compost. Journal of Plant Pathology, 96(2), 243-248.

Utama, C. & Mulyanto, A. (2009). The Potential of Vegetable Market Waste to Become a Fermentation Starter. Health Journal, 2(1), 6-13.

Wati, F. D. A., Nurcahyanti, S. D., Addy, H. S. (2017). Exploration spp bacillus. of rooting cabbage as a antagonistic xanthomonas campestris pv. campestris. Agritrop, 15(2), 217-225.

Wulff, E. G., Mguni, C. M., Mortensen, C. N., Keswani, C. L., & Hockenhull, J. (2002). Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. European Journal of Plant Pathology, 108(4), 317-325.

Xia, Y., DeBolt, S., Dreyer, J., Scott, D., & Williams, M. A. (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, 6, 1-10.

Yemata, G., & Fetene, M. (2016). Induction of systemic resistance in ensete ventricosum clones by the leaf extract of Agarista salicifolia against Xanthomonas campestris pv. Musacearum. Journal of Plant Pathology, 98(3), 429-440.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.