Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

Nur Maulida Safitri, Endang Yuli Herawati, Jue Liang Hsu


The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl) assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51) was identified and synthetized, which exhibited 45.98 ± 1.7% at concentration 128.15 µg/mL. Therefore, S. platensis is indicated as a potential therapeutic source for combating oxidative stress.


Antioxidant; Cyanobacteria; DPPH; LC-MS; RP-HPLC

Full Text:



Aissaori N., Abidi F., Hardouin J., Abdelkafi Z., Marrakchi N., Jouenne T. and Marzouki M. N. (2016). ACE inhibitory and antioxidant activities of novel peptides from Scorpaena notaa by-product protein hydrolysate. International Journal of Peptide Research and Therapeutics 23 (1): 13-23.

Atmaca G. (2004) Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal 45 (5): 776-788.

Balitbang KKP (Research and Development Center, Ministry of Marine Affairs and Fisheries) (2014) Inovasi kelautan dan perikanan memperkuat konsep ekonomi biru p.112-172. Jakarta: Balitbang KKP. ISBN 978-979-3692-47-0.

BPS KKP (Central Bureau of Statistics, Ministry of Marine Affairs and Fisheries) (2015) Marine and fisheries in figures 2015 p23. Jakarta: BPS KKP. ISSN 9-7725D2-593DD7.

Cadet J., Davies K. J. A., Medeiros M. H. G., Mascio P. D. and Wagner J. R. (2017) Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine 107: 13-34.

Cadet J. and Davies K. J. A. (2017) Oxidative DNA damage and repair: an introduction. Free Radical Biology and Medicine 107: 2-12

Cai L. Y., Wu X. S., Zhang Y. H., Li X. X., Ma S., Li J. R. (2015). Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of Functional Foods 16: 234-242.

Cheeseman K. H. and Slater T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin 49 (3): 481-493.

Chi C. F., Wang B., Hu F. Y., Wang Y. M., Zhang B., Deng S. J., and Wu C. M. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International & 3: 124-129

Elias R. J., Kellerby S. S. and Decker E. A. (2008) Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition 48 (5): 430-441.

Fan X., Bai L., Zhu L., Yang L. and Zhang X. (2014). Marine algae-derived bioactive peptides for human nutrition and health. Journal of Agricultural and Food Chemistry 62 (38): 9211-9222.

Farvin K. H. S., Baron C. P., Nielsen N. S., Otte J., and Jacobsen C. (2010). Antioxidant activity of yoghurt peptides: part 2 characterization of peptide fractions. Food Chemistry 123: 1090-1097.

Ferreira-Hermosillo A., Torres-Duran P. V., Shamosh-Halabe S., and Juarez-Oropeza M. A. (2011). Biological effects of Spirulina and current research on its antioxidant activity. RICTB 2 (1): 1-12.

Flora, S. J. S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity 2 (4): 191-206.

Girgih A. T., He R., Malomo S., Offengenden M., Wu J. P. and Aluko R. E. (2014). Structural and functuional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods 6: 384-394.

Glaser K. B. and Mayer A. M. (2009). A reissuance in marine pharmacology: from preclinical curiosity to clinical reality. Biochemistry and Pharmacology 78 (5): 440-448.

He R., Ju X., Yuan J., Wang L., Girgih A. T., and Aluko R. E. (2012). Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research 49: 432-438.

Je J. Y., Park P. J., Kim E. K., Park J. S., Yoon H. D., and Kim K. R. (2009). Antioxidant activity of enzymatic extracts from the brown seaween Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Science and Technology 42: 874-878

Kang K. H., Qian Z. J., Ryu B. and Kim S. K. (2011) Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Science and Biotechnology 20 (1): 183-191.

Kedare S. B. and Singh R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 48 (4): 412-422.

Keil B. and Tong T. N. (1992). Lysis. New York: Springer-Verlag Berlin Heidelberg.

Kim Y. G., Kim S. K., Kwon J. W., Parck O. J., Kim S. G. and Kim Y. C. (2003). Effects of cysteine on amino acid concentrations and transsulfuration enzyme activities in rat liver with protein-calorie malnutrition. Life Science 72: 1171-1181.

Ko S. C., Kim D. and Jeon Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chemistry and Toxicology 50 (7): 2294-2302.

Kou X., Gao J., Xue Z., Zhang Z., Wang H. and Wang X. (2013). Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT Food Science and Technology 50: 591-598.

Liu J. B., Jin Y., Lin S. Y., Jones G. S., and Chen F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chemistry 188: 467-472.

Lobo V., Patil A., Phatak A., and Chandra N. (2010). Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Review 4 (8): 118-126.

Mendis E., Rajapakse N., Byun H. G., and Kim S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences 77: 2166-2178.

Mora L., Escudero E., Fraser P. D., Aristoy M. C. and Toldra F. (2014). Proteomic identification of antioxidant peptides from 400-2500 Da generated in spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International 56: 68-76.

Moure A., Dominguez H. and Parajo H. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry 41: 562-569.

Ngo D. H., Wijesekara I., Vo T. S., Ta Q. V. and Kim S. K. (2011). Marine-food derived functional ingredients as potential antioxidants in the food industry: an overview. Food Research International 44: 523-529.

Ngoh Y. Y. and Gan C. Y. (2016) Enzyme-assisted extraction and identification of antioxidant and α-amylase inhibitory peptides from pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry 190: 331-337.

Power O., Jakeman P., and Fitzgerald R. J. (2012). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44 (3): 797-820.

Ramalingam L., Menikdiwela K., LeMieux M., Dufour J. M., Kaur G., Kalupahana N. and Moussa N. M. (2016). The rennin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochimica et Biophysica Acta 1-9.

Rao A. L., Bharani M., and Pallavi V. (2006). Role of antioxidants and free radicals in health and disease. Advances in Pharmacology and Toxicology 7: 29-38.

Sen D. C. K., Roy S., Kobayashi M. S., Trtschler H. J. and Packer L. (1997). Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. American Journal of Physiology 273: 1771-1778.

Sheih I. C., Wu T. K., and Fang T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein hydrolysate in different oxidation systems. Bioresources Technology 100: 3419-3425.

Tian M., Fang B., Jiang L., Guo H., and Cui J. Y. (2015). Structure-activity relationship of a series of antioxidant tripeptides derived from β-lactoglobulin using QSAR modelling. Dairy Science Technology 176: 1815-1833.

Torres-Fuentes C., Contreras M. M., Recio I., Alaiz M. and Vioque J. (2015). Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chemistry 180: 194-202.

Wang T., Jonsdottir R., Kristinsson H. G., Hreggvidsson G. O., Jonsson J. O., and Thorkelsson G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Science and Technology 43: 1387-1397 2010.

Yu J., Hu Y., Xue M., Dun Y., Li S., Peng N., Liang Y., and Zhao S. (2016). Purification and identification of antioxidat peptides from enzymatic hydrolysate of Spirulina platensis. Journal of Microbiology and Biotechnology 26 (7): 1216-1223.

Zhang T., Li Y., Miao M. and Jiang B. (2011). Purification and characterization of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chemistry 128: 28-33.

Zou T. B., He T. P., Li H. B., Tang H. W., and Xia E. Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21 (72): 1-12.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.