Determination Amylolitic Characteristic of Predominant Lactic Acid Bacteria Isolated during Growol Fermentation, in a Different Starch Medium Composition

Widya Dwi Rukmi Putri, Elok Zubaidah, Ardiyan Dwi Masahid


In order to achieve efficient lactic acid production from starch, fermentation of avarious composition starch medium by lactic acid bacteriawas examined in this study. Many strains of Lactobacillus plantarum isolated from growol fermentation, Lactobacillus plantarumsubsp. plantarum NBRC 15891 and Lactobacillus amylophyllus NBRC 15881 were used as starter cultures in starch basis medium, i.e, basal, basal-starch, enriched basal-starch with polypeptone and yeast extract. Lactobacillus plantarum UA3, AA2, AA11 showed the highest cells growth compare to both reference strains, but Lactobacillus amylophyllus NBRC 15881 showed a greater ability to degrade starch indicated by decreasing of pH and starch content of the fermented substrate. Enriched medium with peptone and yeast extract could generate the growth and starch degradation capabilities for all types of lactic acid bacteria were used.


fermentation; lactic acid bacteria; amylolytic characteristics.

Full Text:



Agati V. J. P., Guyot J., Morlon-Guyot P., Talamond, Hounhouigan D. J. 1998. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J Appl Microbiol 85: 512–20.

Altaf M., Venkateshwar M., Srijana M., Reddy G. 2007. An economic approach for L- (+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. J Appl Microbiol 103; 372–80.

Axelsson L. 2004. Lactic acid bacteria: classification and physiology. In: Salminen S., von Wright A., Ouwehand A., editors. Lactic acid bacteria: microbiological and functional aspects. 3rd rev. and exp.ed.New York: Marcel Dekker, Inc. p. 1-66.

Busairi, A. M. 2010. Effect of nitrogen source and initial sugar concentration on Lactic acid fermentation of pineapple waste using L. delbrueckii. Teknik, 31 (1); 31-34

Calderon M., Loiseau G., and Guyot J. P. 2001. Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch. J. Appl Microbiol. 90: 508–16.

Calderon, M., Loiseau, G., Rodriguez Sanoja R., Guyot, J. P. 2003. Study of starch fermentation at low pH by Lactobacillus fermentum Ogi E1 reveals uncoupling between growth and α- amylase production at pH 4.0. Int. J. of Food Microbiol. 80: 77-87.

Camargo, C., Colona, P., Buleon, A. and Molard, D. R., 1988. Functional Properties of Sour Cassava (Manihotutilissima) Starch: Polvilho Azedo. Journal of the Science of Food and Agriculture 81: 429-435.

Chatterjee, M., Chakrabarty, S. L., Chattopadhyay, B. D., Mandal, R. K. 1997. Production of lactic acid by direct fermentation of starchy wastes by an amylase-producing Lactobacillus. Biotechnol Lett 19: 873–4.

Demiate, L. M., Dupuy, N., Huvenne, J. P., Cereda, M. P. and Wosiacki, G. 2000. Relationship between Baking Behavior of Modified Cassava Starches and Starch Chemical Structure Determined by FTIR Spectroscopy, Carbohydrate Polymer 42: 149-158.

DeMan, J. C., Rogosa, M., Sharpe, M. E., 1960. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23, 130 – 135.

Díaz-Ruiz., G. Guyot, J. P., Ruiz-Teran, F., Morlon-Guyot J., and Wacher, C. 2003. Microbial and Physiological Characterization of Weakly

Amylolytic but Fast-Growing Lactic Acid Bacteria: a Functional Role in Supporting Microbial Diversity in Pozol, a Mexican Fermented Maize Beverage. Applied and Environmental Microbiology, 69 (8); 4367-4374.

Djeghri-Hocine, B., Boukhemis, M., Zidoune, N. and Amrane, A. 2006. Horse Bean Extract for the Supplementation of Lactic Acid Bacteria Culture Media. Journal of Food Technology 4 (4); 229-302.

Ercolini D., Moschetti G., Blaiotta G., and Coppola S. 2001. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Curr Microbiol 42: 199–202.

Holzapfel W. H., Haberer P., Geisen R., Björkroth J., and Schillinger, U. 2001. Taxonomy and important features of probiotic microorganisms in food nutrition. Am J. Clin Nutr 73 (2): 365S–373S.

Giraud, E., Champailler, A. and Raimbault, M. 1994. Degradation of raw starch by a wild amylolytic strain of Lactobacillus plantarum. Appl Environ Microbiol. 60: 4319–23.

Guyot, J. P. and Morlon-Guyot, J., 2001, Effect of Different Cultivation Conditions on Lactobacillus manihotivorans OND32T, an Amylolytic Lactobacillus Isolated from Sour Starch Cassava Fermentation, International Journal of Food Microbiology 67: 217-225.

Guyot, J. P., Brizuela, M. A., Rodriguez-Sanoya, R. and Morlon-Guyot, J. 2003. Characterization and Differentiation of Lactobacillus manihotivorans Strains Isolated from Cassava Sour Starch, International Journal of Food Microbiology 87: 187-192.

Jay, J. M. 2000. Fermentation and fermented dairy products. Modern food microbiology. 6th edition. Gaithersburg, USA: An Aspen Publication, Aspen Publishers, Inc. p. 113–30.

Marcon, M. J. A., Vieira, M. A. Santos, K. De Simas, K. N., Amboni, R. D. M. C. and Amante, E. R. 2006. The effect of fermentation on cassava starch microstructure. Journal of Food Process Engineering 29: 362–372.

Morlon-Guyot, J., J. P. Guyot, B. Pot, I. Jacobe de Haut, and M. Raimbault. 1998. Lactobacillus manihotivoranssp. nov., a new starch-hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int. J. Syst. Bacteriol. 48: 1101–1109.

Nakamura, L. K. 1981. Lactobacillus amylolyticus. A new starch hydrolyzing species from swine waste corn fermentation. Dev Ind Microbiol 20: 531–40

Naveena B. J., Vishnu C., Altaf Md., Reddy G. 2003. Wheat bran an inexpensive substrate for production of lactic acid in solid state fermentation by Lactobacillus amylophilus GV6-optimization of fermentation conditions. J Sci Ind Res 62: 453–6.

Nwankwo D., Anadu E and Usoro R. 1989. Cassava fermenting organisms. MIRCEN J 5: 169–179.

Putri, W.D.R, Nakagawa, Y., Kawasaki, H. Mika, M. Haryadi, Cahyanto, M. N and Marseno, D. W. 2010. DNA Profiling of Lactic Acid Bacteria Isolated during Cassava Fermentation, using a combined method based on Their Phenotypic and Genotypic Characteristics. Sandwich-Like Report. Gadjah Mada University

Rahayu, E. S. 1996. Lactic acid bacteria in Fermented Food of Indonesia Origin. Agritech Vol. 23. No. 2. Hal 75-84. Faculty of Agricultural Technology, Gadjah Mada University. Yogyakarta. Indonesia.

Rascana, A. P., 1986. Microflora in Traditional Growol Fermentation. Scription. Faculty of Agricultural Technology, Gadjah Mada University. Yogyakarta. Indonesia.

Reddy, G., Md. Altaf, B. J. Naveena, M. Venkateshwar, E. Vijay Kumar. 2008. Amylolytic bacterial lactic acid fermentation—A review. Biotechnology Advances 26: 22–34.

Sanni A., Morlon-Guyot, J. and Guyot J. P. 2002. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int J. Food Microbiol 72: 53–62.

Vishnu C., Seenayya G., and Reddy, G. 2000. Direct fermentation of starch to L (+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess Eng 23: 155–8.

Vishnu C., Seenayya G., and Reddy G. 2002. Direct fermentation of various pure and crude starchy substrates to L (+) lactic acid using Lactobacillus amylophilus GV6. World J Microbiol Biotechnol 18: 429–33.

Xiaodong, W., Xuan, G. and Rakshit, S.K. 1997. Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnology Letters, 19 (9): 841–84.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.