Colony Growth, Sporulation, and Viability of Entomopathogenic Fungus Beauveria bassiana (Balsamo) Vuillemin on Various Agricultural Waste as Growing Media

Irvan Kurniawan, Aminudin Afandhi, Hagus Tarno

Abstract


Beauveria bassiana is an entomopathogenic fungus that is widely produced for the benefit of biological control agents of various insect pests. The current production that is expected is to use cheap media but produce quality isolates. This study aims to determine colony growth, sporulation and viability of Beauveria bassiana conidia in several agricultural waste media. The experiment was compiled in a complete randomized design and replicated four times. B. bassiana in rice bran media added with cricket flour  had the fastest colony growth while B. bassiana in rice husk media was the lowest, lower than the control treatment. In  wheat bran media added cricket flour has slower colony growth than rice bran with cricket flour media similar to control treatment but has the second highest sporulation after rice bran with cricket flour media. The highest viability belongs to B. bassiana which is grown on rice bran with cricket flour media. The production in each treatment medium has a real effect but the addition of cricket flour has a significant influence in the production of quality isolates.

Keywords


Beauveria bassiana; Sporulation; Viability; Agricultural waste.

Full Text:

PDF

References


Afandhi, A., Pratiwi, V. R., Hadi, M. S., Setiawan, Y., & Puspitarini, R. D. (2020). Suitable combination between beauveria bassiana (Balsamo) vuillemin and four plant leaf extracts to control spodoptera litura (fabricius). Agrivita, 42(2), 341–349. https://doi.org/10.17503/agrivita.v42i2.2678

Afifah, L., & Saputro, N. W. (2020). Growth and viability of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin in different alternative media. IOP Conference Series: Earth and Environmental Science, 468(1). https://doi.org/10.1088/1755-1315/468/1/012037

Agus, N., Saranga, A. P., Rosmana, A., & Sugiarti, A. (2015). Viability And Conidial Production Of Entomopathogenic Fungi Penicillium SP. International Journal of Scientific & Technology Research, 4(01), 193–195. www.ijstr.org

Alavo, T. B. C., Sermann, H., & Bochow, H. (2002). Biocontrol of aphids using verticillium lecanii in Greenhouse: Factor reducing the effectiveness of the entomopathogenic fungus. Archives of Phytopathology and Plant Protection, 34(6), 407–424. https://doi.org/10.1080/713710567

Atkinson, H. J., & Durschner-Pelz, U. (1995). Spore Transmission and Epidemiology of Verticiliium balanoides, an Endozoic Fungal Parasite of Nematodes in soil. 65, 237–242.

Barreto, C. C., Staats, C. C., Schrank, A., & Vainstein, M. H. (2004). Distribution of Chitinases in the Entomopathogen Metarhizium anisopliae and Effect of N-Acetylglucosamine in Protein Secretion. Current Microbiology, 48(2), 102–107. https://doi.org/10.1007/s00284-003-4063-z

Borisade, O. A., A., O. A., & Falade, M. J. (2016). Interactions of Some Registered Agrochemicals in Nigerian. Ife Journal of Science Vol., 18(4), 949–961.

Borisade, O. A., & Magan, N. (2014). Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 24(9), 999–1011. https://doi.org/10.1080/09583157.2014.909007

Brotodjojo, R. R. R., Solichah, C., Widyaningtyas, A., & Wicaksono, D. (2020). Effects of Culture Media on Viability of Beauveria Bassiana and Its Pathogenicity Against Coffee Bean Borer (Hyphotenemus Hampei). Proceeding International Conference on Science and Engineering, 3(April), 49–53. https://doi.org/10.14421/icse.v3.467

Chandler, D., Hay, D., & Reid, A. P. (1997). Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Applied Soil Ecology, 5(2), 133–141. https://doi.org/10.1016/S0929-1393(96)00144-8

Das, P., Hazarika, L. K., & Bora, D. (2012). Study on Mass Production of Beauveria bassiana (Bals.) Vuill. for the Management of Rice Hispa, Dicladispa armigera (Olivier). Journal of Biological Control, 26(4), 347–350. https://doi.org/10.9734/bpi/cras/v11/9772d

Engelkes, C. A., Nuclo, R. L., & Fravel, D. R. (1997). Effect of carbon, nitrogen, and C:N ratio on growth, sporulation, and biocontrol efficacy of Talaromyces flavus. Phytopathology, 87(5), 500–505. https://doi.org/10.1094/PHYTO.1997.87.5.500

Erawati, D. N., Wardati, I., & Humaida, S. (2018). Potential of Beauveria bassiana Lowland Isolates against Spodoptera litura in Tobacco Plant. IOP Conference Series: Earth and Environmental Science, 207(1). https://doi.org/10.1088/1755-1315/207/1/012001

Feng, K. C., Liu, B. L., & Tzeng, Y. M. (2000). Verticillium lecanii spore production in solid-state and liquid-state fermentations. Bioprocess Engineering, 23(1), 25–29. https://doi.org/10.1007/s004499900115

Geetha, N., Salin, K. P., Nirmala, R., & Sukanya, R. (2018). Economic Natural Broth Media For Spore Production of Beauveria bassiana (Balsamo ) Vuillemin and Beauveria Bronginiartii( Sacc.) Petch. 8, 76–85.

Gerding-González, M., France, A., Sepulveda, M. E., & Campos, J. (2007). Use of chitin to improve a Beauveria bassiana alginate-pellet formulation. Biocontrol Science and Technology, 17(1), 105–110. https://doi.org/10.1080/09583150600937717

Hatzipapas, P., Kalosaka, K., Dara, A., & Christias, C. (2002). Spore germination and appressorium formation in the entomopathogenic Alternaria alternata. Mycological Research, 106(11), 1349–1359. https://doi.org/10.1017/S0953756202006792

Inglis, P. W., Magalhães, B. P., & Valadares-Inglis, M. C. (1999). Genetic variability in Metarhizium flavoviride revealed by telomeric fingerprinting. FEMS Microbiology Letters, 179(1), 49–52. https://doi.org/10.1016/S0378-1097(99)00390-0

Jackson, M. A., & Bothast, R. J. (1990). Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Applied and Environmental Microbiology, 56(11), 3435–3438.

https://doi.org/10.1128/aem.56.11.3435-3438.1990

Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J., & Lomer, C. J. (1998). Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News and Information, 19(1), 21–32.

Kalesanwo, A. O., Adebola, M. O., & Borisade, O. A. (2019). Characterization of Growth and Virulence of Five Nigerian Isolates of Entomopathogenic Fungi Using Galleria mellonella Larvae for Pathogenicity Testing. Annual Research & Review in Biology, 32(5), 1–8. https://doi.org/10.9734/arrb/2019/v32i530098

Kalsum, U., Fatimah, S., & Catur, W. (2011). Efektivitas Pemberian Air Leri Terhadap Pertumbuhan dan Hasil Jamur Tiram Putih (Pleurotus ostreatus). Jurnal Agrovigor, Vol.4(No.2), 86–92.

Kaur, G., & Padmaja, V. (2008). Evaluation of Beauveria bassiana isolates for virulence against Spodoptera litura (Fab.)(Lepidoptera: Noctuidae) and their characterization by RAPD-PCR. African Journal of Microbiology Research, 2(11), 299–307. http://www.academicjournals.org/ajmr/pdf/Pdf2008/Nov/Kaur and Padmaja.pdf

Khaerati, K., Indriati, G., & Wardiana, E. (2020). Keefektifan Bioinsektisida Berbasis Cendawan Entomopatogen Talaromyces pinophilus dan Minyak Nabati terhadap Hama Penggerek Buah Kopi. Jurnal Tanaman Industri Dan Penyegar, 7(2), 93. https://doi.org/10.21082/jtidp.v7n2.2020.p93-108

Kim, J. J., Xie, L., Han, J. H., & Lee, S. Y. (2014). Influence of additives on the yield and pathogenicity of conidia produced by solid state cultivation of an Isaria javanica Isolate. Mycobiology, 42(4), 346–352. https://doi.org/10.5941/MYCO.2014.42.4.346

Lei, C. J., Halim, N. A., Asib, N., Zakaria, A., & Azmi, W. A. (2022). Conidial Emulsion Formulation and Thermal Storability of Metarhizium anisopliae against Red Palm Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Microorganisms, 10(7). https://doi.org/10.3390/microorganisms10071460

Liu, Q., Ying, S. H., Li, J. G., Tian, C. G., & Feng, M. G. (2013). Insight into the transcriptional regulation of Msn2 required for conidiation, multi-stress responses and virulence of two entomopathogenic fungi. Fungal Genetics and Biology, 54, 42–51. https://doi.org/10.1016/j.fgb.2013.02.008

Mishra, S., Kumar, P., & Malik, A. (2016). Suitability of agricultural by-products as production medium for spore production by Beauveria bassiana HQ917687. International Journal of Recycling of Organic Waste in Agriculture, 5(2), 179–184. https://doi.org/10.1007/s40093-016-0127-5

Moorthi, P. V. (2011). Efficacy of Local Isolates of Beauveria bassiana against Spodoptera litura (F.) (Lepidoptera: Noctuidae). Journal of Biological Control, 25(1), 22–25.

Mutmainah. (2015). Perbanyakan Cendawan Entomopatogen Penicillium sp. Isolat Bone pada Beberapa Media Tumbuh Organik. 3(3), 1–12.

Novianti, D. (2017). Efektivitas Beberapa Media untuk Perbanyakan Jamur Metarhizium anisopliae. 14(2), 1–19.

Petlamul, W., & Prasertsan, P. (2012). Evaluation of strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the basis of their virulence, germination rate, conidia production, radial growth and enzyme activity. Mycobiology, 40(2), 111–116. https://doi.org/10.5941/MYCO.2012.40.2.111

Pham, T. A., Kim, J. J., Kim, S. G., & Kim, K. (2009). Production of Blastospore of Entomopathogenic Submerged Batch Culture. Mycobiology, 37(3), 218–224.

Puspaningrum, I. (2013). Produksi Jamur Tiram Putih (Pleurotus ostreatus) Pada Media Tambahan Molase dengan Dosis yang Berbeda.

Rai, R., Pandey, R., & Tamta, A. K. (2022). Efficacy of Sunflower Oil Formulation and Conidial Suspension of Beauveria Bassiana Against Spodoptera Litura (F.). Indian Journal of Entomology, 84(1), 88–91. https://doi.org/10.55446/IJE.2021.327

Rayner, A. D. M., & Boddy, L. (1988). Fungal Communities in the Decay of Wood. 115–166. https://doi.org/10.1007/978-1-4684-5409-3_4

Rehner, S. A., Minnis, A. M., Sung, G. H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055–1073. https://doi.org/10.3852/10-302

Sahayaraj, K., & Namasivayam, S. K. R. (2008). Mass Produciton of Entomopathonic Fungi Using Agricultural Products and by Products. 7(12), 1907–1910.

Saputro, T. B., Prayogo, Y., Rohman, F. L., & Alami, N. H. (2019). The virulence improvement of Beauveria bassiana in infecting Cylas formicarius modulated by various chitin based compounds. Biodiversitas, 20(9), 2486–2493. https://doi.org/10.13057/biodiv/d200909

Sari, W., & Khobir, M. L. (2020). Penambahan Tepung Serangga pada Media Perbanyakan untuk Meningkatkan Virulensi Beauveria bassiana terhadap Walang Sangit. Pro-STek, 1(2), 70. https://doi.org/10.35194/prs.v1i2.823

Sayuthi, M., RUSYDI, A., HASNAH, H., & AZAHRA, N. E. (2022). Virulence of conidia Beauveria bassiana (Bals.) as a bioinsecticide against Crocidolomia pavonana (F.) (Lepidoptera: Pyralidae) on broccoli plants. Jurnal Natural, 22(1), 36–43. https://doi.org/10.24815/jn.v22i1.22628

Schisler, D. (1990). Influence of Nutrition During Conidiation of Colletotricum trucantum on Conidial Germination and Efficacy in Inciting Desease in Sesbania exaltata. In Phytopathology (Vol. 81, pp. 458–461).

Seema, Y., Neeraj, T., & Krishan, K. (2013). Effect of different carbon and nitrogen sources on degradation of phthalate degrading bacteria. Journal of Agricultural Resources and Environment, 3(3), 374–376. https://doi.org/10.13254/j.jare.2018.0217

Shah, P. A., & Pell, J. K. (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61(5–6), 413–423. https://doi.org/10.1007/s00253-003-1240-8

Smith, R. J., & Grula, E. A. (1981). Nutritional requirements for conidial germination and hyphal growth of Beauveria bassiana. Journal of Invertebrate Pathology, 37(3), 222–230. https://doi.org/10.1016/0022-2011(81)90079-3

Sumikarsih, E., Herlinda, S., & Pujiastuti, Y. (2019). Conidial density and viability of Beauveria bassiana isolates from Java and Sumatra and their virulence against nilaparvata lugens at different temperatures. Agrivita, 41(2), 335–350. https://doi.org/10.17503/agrivita.v41i2.2105

Trizelia. (2005). Cendawan Entomopatogen Beauveria bassiana (Bals.) Vuill. (Deutromycotina: Hyphomycete): Keragaman Genetik, Karakterisasi Fisiologi dan Virulensinya terhadap Crocidolomia pavonana (F.) (Lepidoptera: Pyrilidae). Institut Pertanian Bogor.

Uruilal, C., Kalay, A. M., Kaya, E., & Siregar, A. (2018). Pemanfaatan Kompos Ela Sagu, Sekam Dan Dedak Sebagai Media Perbanyakan Agens Hayati Trichoderma harzianum Rifai. Agrologia, 1(1). https://doi.org/10.30598/a.v1i1.295

Varela, A., & Morales, E. (1996). Characterization of some Beauveria bassiana isolates and their virulence toward the coffee berry borer Hypothenemus hampei. Journal of Invertebrate Pathology, 67(2), 147–152. https://doi.org/10.1006/jipa.1996.0022

Wargane, V., Parate, R. L., Lavhe, N. V, Sonune, B. D., & Mane, K. K. (2020). Pathogenicity of Beauveria bassiana aginst second instar larvae of Spodoptera litura and Compatibility with insecticides. 9(1), 576–578.

Wraight, S. P., Jacksonz, M. A., & De Kock, S. L. (2001). Production, Stabilization and Formulation of Fungal Biocontrol Agents. Fungi As Biocontrol Agents: Progress Problems and Potential, 253.

Wu, J., Yu, X., Wang, X., Tang, L., & Ali, S. (2019). Matrine Enhances the Pathogenicity of Beauveria brongniartii Against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 10(August), 1–9. https://doi.org/10.3389/fmicb.2019.01812

Xu, J., Zhang, K., Cuthbertson, A. G. S., Du, C., & Ali, S. (2020). Toxicity and biological effects of beauveria brongniartii fe0 nanoparticles against spodoptera litura (Fabricius). Insects, 11(12), 1–15. https://doi.org/10.3390/insects11120895

Yeo, H., Pell, J. K., Alderson, P. G., Clark, S. J., & Pye, B. J. (2003). Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Management Science, 59(2), 156–165. https://doi.org/10.1002/ps.622




DOI: https://doi.org/10.21776/ub.rjls.2022.009.02.4

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.