FTIR (Fourier Transform Infrared) Spectroscopy Method for Bacillus cereus Characterization

Intan Silfiani, Abdul Latief Abadi, Abdul Latief Abadi, Luqman Qurata Aini, Luqman Qurata Aini, Kestrillia Rega Prillianti, Kestrillia Rega Prillianti, Matheus Randy Prabowo, Matheus Randy Prabowo, Sylvia Herli Dianti, Sylvia Herli Dianti


One of the potentials of Bacillus cereus bacteria is as an inducer of systemic resistance in plants against plant diseases. FTIR spectroscopy is a traditional method extensively utilized in the pharmaceutical industry, since it is fast, non-destructive, and requires minimal sample preparation. In this study, the indicators that were effectively discovered were the functional groups that compose carbohydrates and lipids. The absorption region to be analyzed for the functional groups that compose carbohydrates is in the wavenumber region of 1200-800 cm-1, whereas the functional groups that compose up lipids are in the wavenumber range of 3020-2800 cm-1 and 1800-800 cm-1. The signal produced on the spectral signature of B. cereus isolates revealing the functional groups that compose carbohydrates is at the absorption values of 1185, 1132, 1122, 1098, 1078, 1056, 1010, and 973 cm-1. This is analogous to the notion that the cell wall of B. cereus is composed of peptidoglycan which contains carbohydrates. While the absorption values that indicate the functional groups that make up lipids are 2969, 2955, 2925, 2870, 2846, 1759, 1733, 1471, 1455, 1234, 895 cm-1, which according to the literature suggests that the body structure of B. cereus contains 2-3% of the dry weight of bacterial cells and consists of neutral lipids and phospholipids.


Bacillus cereus, FTIR spectroscopy, PCR, Carbohydrates, Lipids


Asif, H., Akram, M., Saeed, T., Khan, M., Akhtar, N., Rehman, R., Shah, S., Ahmed, K., & Shaheen, G. (2011). Review paper : carbohydrates. International Research Journal of Biochemistry and Bioinformatics, 1(1). https://www.researchgate.net/publication/260228521_Review_Paper_Carbohydrates_1

Harrabi, S., St-Amand, A., Sakouhi, F., Sebei, K., Kallel, H., Mayer, P. M., & Boukhchina, S. (2008). Phytostanols and phytosterols distributions in corn kernel. Food Chemistry, 111(1), 115–120. https://doi.org/10.1016/j.foodchem.2008.03.044

Herget, S., Toukach, P. v., Ranzinger, R., Hull, W. E., Knirel, Y. A., & von der Lieth, C. W. (2008). Statistical analysis of the bacterial carbohydrate structure database (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Structural Biology, 8. https://doi.org/10.1186/1472-6807-8-35

Jiang, C. H., Fan, Z. H., Xie, P., & Guo, J. H. (2016). Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to PST DC3000 in Arabidopsis. Frontiers in Microbiology, 7(MAY). https://doi.org/10.3389/fmicb.2016.00664

Lang, D. R., & Lundgren, D. G. (1970). Lipid composition of Bacillus cereus during growth and sporulation. Journal of Bacteriology, 101(2). https://doi.org/10.1128/jb.101.2.483-489.1970

Leoff, C., Saile, E., Sue, D., Wilkins, P., Quinn, C. P., Carlson, R. W., & Kannenberg, E. L. (2008). Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness. Journal of Bacteriology, 190(1), 112–121. https://doi.org/10.1128/JB.01292-07

Messelhäußer, U., & Ehling-Schulz, M. (2018). Bacillus cereus—a Multifaceted Opportunistic Pathogen. In Current Clinical Microbiology Reports (Vol. 5, Issue 2, pp. 120–125). Springer. https://doi.org/10.1007/s40588-018-0095-9

Movasaghi, Z., Rehman, S., & Rehman, I. U. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. In Applied Spectroscopy Reviews (Vol. 43, Issue 2, pp. 134–179). https://doi.org/10.1080/05704920701829043

Naumann, D. (2006). Infrared Spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a0117

Niu, D. D., Wang, C. J., Guo, Y. H., Jiang, C. H., Zhang, W. Z., Wang, Y. peng, & Guo, J. H. (2012). The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Science and Technology, 22(9), 991–1004. https://doi.org/10.1080/09583157.2012.706595

Ojeda, J. J., & Dittrich, M. (2012). Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Methods in Molecular Biology, 881, 187–211. https://doi.org/10.1007/978-1-61779-827-6_8

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to spectroscopy. Brooks/Cole, Cengage Learning. http://dl.iranchembook.ir/ebook/organic-chemistry-2753.pdf

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, Y., Jiang, C., & Guo, J. H. (2019). Plant root exudates are involved in Bacillus cereusAR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology, 10(JAN). https://doi.org/10.3389/fmicb.2019.00098

Warda, A. K., Siezen, R. J., Boekhorst, J., Wells-Bennik, M. H. J., de Jong, A., Kuipers, O. P., Nierop Groot, M. N., & Abee, T. (2016). Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0156796

DOI: https://doi.org/10.21776/ub.rjls.2022.009.02.3


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.