Optimized Expression Condition of CIDRα-PfEMP1 Recombinant Protein Production in Escherichia coli BL21(DE3): A Step to Develop Malaria Vaccine Candidate
Abstract
Keywords
Full Text:
PDFReferences
Adams, Y., Kuhnrae, P., Higgins, M. K., Ghumra, A., & Rowe, J. A. (2014). Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infection and Immunity, 82(3), 949–959. https://doi.org/10.1128/IAI.01233-13
Bernabeu, M., and Smith, J. D. (2017). EPCR and Malaria Severity: The Center of a Perfect Storm. Trends in Parasitology, 33(4), 295–308. https://doi.org/10.1016/j.pt.2016.11.004
Bull, P. C., & Abdi, A. I. (2016). The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: Prospects for a vaccine. Parasitology, 143(2), 171–186. https://doi.org/10.1017/S0031182015001274
Chen, Q., Heddini, A., Barragan, A., Fernandez, V., Pearce, S. F. A., & Wahlgren, M. (2000). The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. Journal of Experimental Medicine, 192(1), 1–9. https://doi.org/10.1084/jem.192.1.1
Chen, Q., Heddini, A., Barragan, A., Fernandez, V., Pearce, S. F. A., Wahlgren, M., Sundström, A., Schlichtherle, M., Sahlén, A., Carlson, J., Datta, S., & Wahlgren, M. (2000). The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. Journal of Experimental Medicine, 192(1), 1–9. https://doi.org/10.1084/jem.192.1.1
Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391. https://doi.org/10.1016/j.mex.2015.09.005
Corradin, G. (2007). Peptide based malaria vaccine development: personal considerations. Microbes and Infection, 9(6), 767–771. https://doi.org/doi.org/10.1016/j.micinf.2007.02.007.
Dewi, R., Ratnadewi, A. A. I., Sawitri, W. D., Rachmania, S., & Sulistyaningsih, E. (2018). Cloning, sequence analysis, and expression of CIDR1α-pfEMP1 from Indonesian plasmodium falciparum isolate. Current Topics in Peptide and Protein Research, 19, 95–104.
Draper, S. J., Angov, E., Horii, T., Miller, L. H., Srinivasan, P., Theisen, M., & Biswas, S. (2015). Recent advances in recombinant protein-based malaria vaccines. Vaccine, 33(52), 7433–7443. https://doi.org/10.1016/j.vaccine.2015.09.093
Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., Higgins, M. K., Long, C. A., & Seder, R. A. (2018). Malaria Vaccines: Recent Advances and New Horizons. Cell Host and Microbe, 24(1), 43–56. https://doi.org/10.1016/j.chom.2018.06.008
Dvorak, P., Chrast, L., Nikel, P. I., Fedr, R., Soucek, K., Sedlackova, M., Chaloupkova, R., Lorenzo, V., Prokop, Z., & Damborsky, J. (2015). Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 14(1), 1–15. https://doi.org/10.1186/s12934-015-0393-3
Emile, G., Grau, R., & Craig, A. G. (2012). Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiologi, 7(2), 291–302.
Ernst, O., & Zor, T. (2010). Linearization of the Bradford protein assay. Journal of Visualized Experiments, 38, 1–6. https://doi.org/10.3791/1918
Flick, K., Ahuja, S., Chene, A., Bejarano, M. T., & Chen, Q. (2004). membrane protein 1 domains in Escherichia coli. Malaria Journal, 8, 1–8. https://doi.org/10.1186/1475-2875-3-50
Gomes, L., Monteiro, G., & Mergulhão, F. (2020). The impact of IPTG induction on plasmid stability and heterologous protein expression by escherichia coli biofilms. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020576
Guerra, Á. P., Calvo, E. P., Wasserman, M., & Chaparro-Olaya, J. (2016). Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. Biomedica, 36, 97–108. https://doi.org/10.7705/biomedica.v36i3.3011
He, F. (2011). Bradford Protein Assay Fanglian He. Bio-Protocol, 1(6), e45.
Hermana, E. Kusdiyantini, A. Suprihadi, N. N. (2015). Ekstraksi Protein Eschericia coli BL21 Rekombinan Gen mycobacterium tuberculosis dengan Variasi Waktu Inkubasi Induksi Isoprphyl-B-D-Thiogalactosidase (IPTG) dan Metode Lisis Sel. Jurnal Biologi, 4(2), 60–68.
Kementerian Kesehatan RI. (2013). Situasi Malaria di Indonesia. Infodatin. Pusat Data dan Informasi Kementerian Kesehatan RI.
Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., Kampondeni, S. D., Potchen, M. J., Dambrauskas, N., Vigdorovich, V., Oliver, B. G., Hochman, S. E., Mowrey, W. B., MacCormick, I. J. C., Mandala, W. L., Rogerson, S. J., Sather, D. N., Aitchison, J. D., Taylor, T. E., … Kim, K. (2017). Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host and Microbe, 22(5), 601-614.e5. https://doi.org/10.1016/j.chom.2017.09.009
Laboratories Bio-Rad. (2012). A Guide to Polyacrylamide Gel Electrophoresis and Detection. Bio-Rad, 47.
Lestari, W. (2010). Produksi dan Karakterisasi Imunogenisitas Protein Rekombinan Nonstruktural 1 Virus Dengue Serotipe1 Strain Indonesia Bagi Pengembangan Kandidat Vaksin Dengue (Tahap I dan II). Litbankes.
Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied Microbiology and Biotechnology, 93(6), 2543–2549. https://doi.org/10.1007/s00253-011-3642-3
Manns, J. M. (2011). SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of proteins. Current Protocols in Microbiology, Suppl 22, 1–13. https://doi.org/https://doi.org/10.1002/9780471729259.mca03ms22
McCullers, J. A., & Dunn, J. D. (2008). Advances in vaccine technology and their impact on managed care. P and T, 33(1), 35–39.
Pedrol, N. B., & Pilar Ramos, T. (2001). PROTEIN CONTENT QUANTIFICATION BY BRADFORD METHOD. In Handbook of Plant Ecophysiology Techniques (pp. 283–295).
Pratiwi, R. D. (2019). Optimasi Ekspresi Human Epidermal Growth Factor (h-EGF) Rekombinan dalam Escherichia coli BL21(DE3) dengan Variasi Media dan Konsentrasi Penginduksi. Chimica et Natura Acta, 7(2), 91–97. https://doi.org/https://doi.org/10.24198/cna.v7.n2.23824
Ranjbari, J., Babaeipour, V., Vahidi, H., Moghimi, H., Mofid, M. R., Namvaran, M. M., & Jafari, S. (2015). Enhanced production of insulin-like growth factor i protein in Escherichia coli by optimization of five key factors. Iranian Journal of Pharmaceutical Research, 14(3), 907–917. https://doi.org/10.22037/ijpr.2015.1685
Reinking, L. (2007). ImageJ Basics. Word Journal Of The International Linguistic Association, June, 1–22.
Riskesdas-Kementerian Kesehatan RI. (2018). Epidemiologi Malaria di Indonesia. Jakarta.
Rowe, J. A., Claessens, A., Corrigan, R. A., & Arman, M. (2009). Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: Molecular mechanisms and therapeutic implications. Expert Reviews in Molecular Medicine, 11(May), 1–29. https://doi.org/10.1017/S1462399409001082
Turner, L., Lavstsen, T., Berger, S. S., Wang, C. W., Petersen, J. E. V., Avril, M., Brazier, A. J., Freeth, J., Jespersen, J. S., Nielsen, M. A., Magistrado, P., Lusingu, J., Smith, J. D., Higgins, M. K., & Theander, T. G. (2013). Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 498(7455), 502–505. https://doi.org/10.1038/nature12216
World Health Organization. 2019. WHO Malaria Report 2018. Accessed : 15th May 2021.
DOI: https://doi.org/10.21776/ub.rjls.2021.008.01.3
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.