Optimized Expression Condition of CIDRα-PfEMP1 Recombinant Protein Production in Escherichia coli BL21(DE3): A Step to Develop Malaria Vaccine Candidate

Winnie Almira Setyoadji, Erma Sulistyaningsih, Irawan Fajar Kusuma


Malaria is still an essential epidemiological disease worldwide, including in Indonesia. Several approaches are performed to control the disease, as well as vaccine development. The Cysteine-rich interdomain region α of Plasmodium falciparum erythrocyte membrane protein 1 (CIDRα-PfEMP1) is a pivotal domain in the malaria pathogenesis make it a malaria vaccine candidate. The development of the malaria vaccine is performed using recombinant technology. Recombinant protein production is an important step. The study aimed to determine the optimized condition for CIDRα-PfEMP1 recombinant protein expression in Escherichia coli BL21(DE3) expression system. Serial IPTG concentrations from 0.05, 0.1, 0.3, and 0.5 mM and two different incubation periods of 4 h and 8 h were optimized. The recombinant protein expression was visualized in SDS-PAGE, measured using the Bradford protein assay, and calculated using software Image J. SDS-PAGE visualization showed a 27 kDa band expressed CIDRα-PfEMP1 recombinant protein. The optimized condition for CIDRα-PfEMP1 recombinant protein expression was at 0.03 mM IPTG concentration and 8 h incubation period.


CIDRα-PfEMP1, E. coli BL21(DE3), IPTG, incubation period, recombinant protein

Full Text:



Adams, Y., Kuhnrae, P., Higgins, M. K., Ghumra, A., & Rowe, J. A. (2014). Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infection and Immunity, 82(3), 949–959. https://doi.org/10.1128/IAI.01233-13

Bernabeu, M., and Smith, J. D. (2017). EPCR and Malaria Severity: The Center of a Perfect Storm. Trends in Parasitology, 33(4), 295–308. https://doi.org/10.1016/j.pt.2016.11.004

Bull, P. C., & Abdi, A. I. (2016). The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: Prospects for a vaccine. Parasitology, 143(2), 171–186. https://doi.org/10.1017/S0031182015001274

Chen, Q., Heddini, A., Barragan, A., Fernandez, V., Pearce, S. F. A., & Wahlgren, M. (2000). The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. Journal of Experimental Medicine, 192(1), 1–9. https://doi.org/10.1084/jem.192.1.1

Chen, Q., Heddini, A., Barragan, A., Fernandez, V., Pearce, S. F. A., Wahlgren, M., Sundström, A., Schlichtherle, M., Sahlén, A., Carlson, J., Datta, S., & Wahlgren, M. (2000). The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. Journal of Experimental Medicine, 192(1), 1–9. https://doi.org/10.1084/jem.192.1.1

Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391. https://doi.org/10.1016/j.mex.2015.09.005

Corradin, G. (2007). Peptide based malaria vaccine development: personal considerations. Microbes and Infection, 9(6), 767–771. https://doi.org/doi.org/10.1016/j.micinf.2007.02.007.

Dewi, R., Ratnadewi, A. A. I., Sawitri, W. D., Rachmania, S., & Sulistyaningsih, E. (2018). Cloning, sequence analysis, and expression of CIDR1α-pfEMP1 from Indonesian plasmodium falciparum isolate. Current Topics in Peptide and Protein Research, 19, 95–104.

Draper, S. J., Angov, E., Horii, T., Miller, L. H., Srinivasan, P., Theisen, M., & Biswas, S. (2015). Recent advances in recombinant protein-based malaria vaccines. Vaccine, 33(52), 7433–7443. https://doi.org/10.1016/j.vaccine.2015.09.093

Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., Higgins, M. K., Long, C. A., & Seder, R. A. (2018). Malaria Vaccines: Recent Advances and New Horizons. Cell Host and Microbe, 24(1), 43–56. https://doi.org/10.1016/j.chom.2018.06.008

Dvorak, P., Chrast, L., Nikel, P. I., Fedr, R., Soucek, K., Sedlackova, M., Chaloupkova, R., Lorenzo, V., Prokop, Z., & Damborsky, J. (2015). Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 14(1), 1–15. https://doi.org/10.1186/s12934-015-0393-3

Emile, G., Grau, R., & Craig, A. G. (2012). Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiologi, 7(2), 291–302.

Ernst, O., & Zor, T. (2010). Linearization of the Bradford protein assay. Journal of Visualized Experiments, 38, 1–6. https://doi.org/10.3791/1918

Flick, K., Ahuja, S., Chene, A., Bejarano, M. T., & Chen, Q. (2004). membrane protein 1 domains in Escherichia coli. Malaria Journal, 8, 1–8. https://doi.org/10.1186/1475-2875-3-50

Gomes, L., Monteiro, G., & Mergulhão, F. (2020). The impact of IPTG induction on plasmid stability and heterologous protein expression by escherichia coli biofilms. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020576

Guerra, Á. P., Calvo, E. P., Wasserman, M., & Chaparro-Olaya, J. (2016). Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. Biomedica, 36, 97–108. https://doi.org/10.7705/biomedica.v36i3.3011

He, F. (2011). Bradford Protein Assay Fanglian He. Bio-Protocol, 1(6), e45.

Hermana, E. Kusdiyantini, A. Suprihadi, N. N. (2015). Ekstraksi Protein Eschericia coli BL21 Rekombinan Gen mycobacterium tuberculosis dengan Variasi Waktu Inkubasi Induksi Isoprphyl-B-D-Thiogalactosidase (IPTG) dan Metode Lisis Sel. Jurnal Biologi, 4(2), 60–68.

Kementerian Kesehatan RI. (2013). Situasi Malaria di Indonesia. Infodatin. Pusat Data dan Informasi Kementerian Kesehatan RI.

Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., Kampondeni, S. D., Potchen, M. J., Dambrauskas, N., Vigdorovich, V., Oliver, B. G., Hochman, S. E., Mowrey, W. B., MacCormick, I. J. C., Mandala, W. L., Rogerson, S. J., Sather, D. N., Aitchison, J. D., Taylor, T. E., … Kim, K. (2017). Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host and Microbe, 22(5), 601-614.e5. https://doi.org/10.1016/j.chom.2017.09.009

Laboratories Bio-Rad. (2012). A Guide to Polyacrylamide Gel Electrophoresis and Detection. Bio-Rad, 47.

Lestari, W. (2010). Produksi dan Karakterisasi Imunogenisitas Protein Rekombinan Nonstruktural 1 Virus Dengue Serotipe1 Strain Indonesia Bagi Pengembangan Kandidat Vaksin Dengue (Tahap I dan II). Litbankes.

Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied Microbiology and Biotechnology, 93(6), 2543–2549. https://doi.org/10.1007/s00253-011-3642-3

Manns, J. M. (2011). SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of proteins. Current Protocols in Microbiology, Suppl 22, 1–13. https://doi.org/https://doi.org/10.1002/9780471729259.mca03ms22

McCullers, J. A., & Dunn, J. D. (2008). Advances in vaccine technology and their impact on managed care. P and T, 33(1), 35–39.

Pedrol, N. B., & Pilar Ramos, T. (2001). PROTEIN CONTENT QUANTIFICATION BY BRADFORD METHOD. In Handbook of Plant Ecophysiology Techniques (pp. 283–295).

Pratiwi, R. D. (2019). Optimasi Ekspresi Human Epidermal Growth Factor (h-EGF) Rekombinan dalam Escherichia coli BL21(DE3) dengan Variasi Media dan Konsentrasi Penginduksi. Chimica et Natura Acta, 7(2), 91–97. https://doi.org/https://doi.org/10.24198/cna.v7.n2.23824

Ranjbari, J., Babaeipour, V., Vahidi, H., Moghimi, H., Mofid, M. R., Namvaran, M. M., & Jafari, S. (2015). Enhanced production of insulin-like growth factor i protein in Escherichia coli by optimization of five key factors. Iranian Journal of Pharmaceutical Research, 14(3), 907–917. https://doi.org/10.22037/ijpr.2015.1685

Reinking, L. (2007). ImageJ Basics. Word Journal Of The International Linguistic Association, June, 1–22.

Riskesdas-Kementerian Kesehatan RI. (2018). Epidemiologi Malaria di Indonesia. Jakarta.

Rowe, J. A., Claessens, A., Corrigan, R. A., & Arman, M. (2009). Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: Molecular mechanisms and therapeutic implications. Expert Reviews in Molecular Medicine, 11(May), 1–29. https://doi.org/10.1017/S1462399409001082

Turner, L., Lavstsen, T., Berger, S. S., Wang, C. W., Petersen, J. E. V., Avril, M., Brazier, A. J., Freeth, J., Jespersen, J. S., Nielsen, M. A., Magistrado, P., Lusingu, J., Smith, J. D., Higgins, M. K., & Theander, T. G. (2013). Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 498(7455), 502–505. https://doi.org/10.1038/nature12216

World Health Organization. 2019. WHO Malaria Report 2018. Accessed : 15th May 2021.

DOI: https://doi.org/10.21776/ub.rjls.2021.008.01.3


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.