Characteristics of Tuna Viscera (Thunnus sp.) Hydrolysate Protein Fermented by Bacillus licheniformis

Galih Nugroho, Arning Wilujeng Ekawati, Hartati Kartikaningsih

Abstract


This study aims to analyze the nutritional composition of the degree of hydrolysis and amino acids in the internal organ waste of tuna and the protein hydrolyzate of tuna's internal organs after fermentation using the Bacillus licheniformis bacteria. The analysis showed that the protein content of tuna offal was 53.52%, and after fermentation by Bacillus licheniformis, bacteria were able to increase protein levels from 56.04. The degree of hydrolysis of protein (DH) showed an increase of 13.24% in tuna offal to 22.28% of protein hydrolyzates are fermented tuna innards. The total essential amino acids and non-essential amino acids in the fermented tuna innards' protein hydrolyzates increased during the fermentation process. The highest levels of essential amino acids were found in arginine as high as 3.632965 at the 96th hour, and the lowest histidine was 1.082602. In contrast, for the highest non-essential amino acids, there was glycine at 8.52223, and the lowest for tyrosine was 1.272592.

Keywords


Tuna viscera; Hydrolysate; Protein Food; Fermented food

Full Text:

PDF

References


Aisjah, T. (1995). Biokonversi Limbah Umbi Singkong menjadi Bahan Pakan Sumber Protein oleh Jamur Rhizophus serta pengaruhnya terhadap Pertumbuhan Ayam Pedaging. Disertasi. Universitas Padjadjaran. Bandung.

Annisa, S., Darmanto, Y. S., & Amalia, U. (2017). Pengaruh perbedaan spesies ikan terhadap hidrolisat protein ikan dengan penambahan enzim papain (the effect of various fish species on fish protein hydrolysate with the addition of papain enzyme). Saintek perikanan : Indonesian Journal of Fisheries Science and Technology, 13(1), 24. https://doi.org/10.14710/ijfst.13.1.24-30

Ariyani F., Heruwati E.S., Murdinah., Wibowo., & Susetyo. (2001). Pemanfaatan kepala ikan tuna dan isi perut ikan pari sebagai sumber pepton kasar bagi media pertumbuhan mikroorganisme. Jurnal Penelitian Perikanan Indonesia, 7, 75-84.

Association of Official Analytical Chemistry (AOAC). (2000). Official Methods of Analysis. Canada : Mc Graw Hill Press.

Belkaaloul A., A. Checroun., A. I. AitAbdesalam., D. Saidi, and O. Kherouoa. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum Bifidobacterium longum and Streptococcus Thermophilus bifidobacterium longum). African Journal of Biotechnology, 9(10), 1463-1469.

Islamy, R. A. (2019). Antibacterial Activity of Cuttlefish Sepia sp. (Cephalopoda,) Ink Extract Against Aeromonas hydrophila. Majalah Obat Tradisional, 24(3), 184. https://doi.org/10.22146/mot.45315

Jemil, I., Jridi, M., Nasri, R., Ktari, N., Ben Slama-Ben Salem, R., Mehiri, M., Hajji, M., & Nasri, M. (2014). Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963–972. https://doi.org/10.1016/j.procbio.2014.03.004

Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M.-C., Hajji, M., Nasri, M., & Toldrá, F. (2016). A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International, 89, 347–358. https://doi.org/10.1016/j.foodres.2016.08.020

Jemil, I., Nasri, R., Abdelhedi, O., Aristoy, M.-C., Salem, R. B. S.-B., Kallel, C., Marrekchi, R., Jamoussi, K., ElFeki, A., Hajji, M., Toldrá, F., & Nasri, M. (2017). Beneficial effects of fermented sardinelle protein hydrolysates on hypercaloric diet induced hyperglycemia, oxidative stress and deterioration of kidney function in wistar rats. Journal of Food Science and Technology, 54(2), 313–325. https://doi.org/10.1007/s13197-016-2464-9

Khiari, Z., & Mason, B. (2018). Comparative dynamics of fish by-catch hydrolysis through chemical and microbial methods. Lwt-Food Science and Technology, 97, 135-143.

Klomklao, S., & Benjakul, S. (2016). Utilization of Tuna Processing Byproducts: Protein Hydrolysate from Skipjack Tuna (Katsuwonus pelamis) Viscera. Journal of Food Processing and Preservation, 41(3), e12970. https://doi.org/10.1111/jfpp.12970

Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of agricultural and food chemistry, 48(3), 657–666. https://doi.org/10.1021/jf990447v

Mao, X., Liu, P., He, S., Xie, J., Kan, F., Yu, C., Li, Z., Xue, C., & Lin, H. (2013). Antioxidant Properties of Bio-active Substances from Shrimp Head Fermented by Bacillus licheniformis OPL-007. Applied Biochemistry and Biotechnology, 171(5), 1240–1252. https://doi.org/10.1007/s12010-013-0217-z

Nguyen, H. T. M., Pérez-Gálvez, R., & Bergé, J. P. (2012). Effect of diets containing tuna head hydrolysates on the survival and growth of shrimp Penaeus vannamei. Aquaculture, 324–325, 127–134. https://doi.org/10.1016/j.aquaculture.2011.11.014

Nilsang, S., Lertsiri, S., Suphantharika, M., & Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70(4), 571–578. https://doi.org/10.1016/j.jfoodeng.2004.10.011

Parvathy, U., Zynudheen, A.A., Panda, S.K., Jeyakumari, A., & Anandan, R. (2016). Extraction of Protein from Yellowfin Tuna (Thunnus albacares) Waste by Enzymatic Hydrolysis and its Characterization. Fishery technology, 53, 115-124.

Poonsuk, P. & Thiraratana. (2008). Comparison and selection of protease and lipase sources from visceral organs of three tuna species. Songklanakarin Journal of Science and Technology, 30(Suppl.1).

Pratama, W. W., Nursyam, H., Hariati, A. M., Islamy, R. A., & Hasan, V. (2020). Short Communication: Proximate analysis, amino acid profile and albumin concentration of various weights of Giant Snakehead (Channa micropeltes) from Kapuas Hulu, West Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3), 1196–1200. https://doi.org/10.13057/biodiv/d210346

Rai, A. K., Jini, R., Swapna, H. C., Sachindra, N. M., Bhaskar, N., & Baskaran, V. (2011). Application of Native Lactic Acid Bacteria (LAB) for Fermentative Recovery of Lipids and Proteins from Fish Processing Wastes: Bioactivities of Fermentation Products. Journal of Aquatic Food Product Technology, 20(1), 32–44. https://doi.org/10.1080/10498850.2010.528174

Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews: MMBR, 62(3), 597–635.

Sayana, K. S., & Sirajudheen, T. K., (2017). By-products from Tuna processing wastes an economic approach to coastal waste management. Proceedings of the International Seminar on Coastal Biodiversity Assessment, 411-420.

Soeka, Y.S., Rahayu, S. H., Setianingrum, N. & Naiola. E. (2011). Kemampuan Bacillus licheniformis dalam Memproduksi Enzim Protease yang Bersifat Alkali dan Termofilik. Media Litbang Kesehatan, 21(2), 89-94.

Unajak, S., Meesawat, P., Paemanee, A., Areechon, N., Engkagul, A., Kovitvadhi, U., Kovitvadhi, S., Rungruangsak-Torrissen, K., & Choowongkomon, K. (2012). Characterisation of thermostable trypsin and determination of trypsin isozymes from intestine of Nile tilapia (Oreochromis niloticus L.). Food Chemistry, 134(3), 1533–1541. https://doi.org/10.1016/j.foodchem.2012.03.074

Yu, X., Mao, X., He, S., Liu, P., Wang, Y., & Xue, C. (2014). Biochemical properties of fish sauce prepared using low salt, solid state fermentation with anchovy by-products. Food Science and Biotechnology, 23(5), 1497–1506. https://doi.org/10.1007/s10068-014-0205-2.




DOI: https://doi.org/10.21776/ub.rjls.2020.007.02.4

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.