The Effect of Pregelatinization with Heat and Moisture Treatment on Physicochemical and Pasting Characteristics of Red Glutinous Rice Flour

Jhauharotul Muchlisyiyah, Hera Sisca Prasmita, Teti Estiasih, Ratna Palupi Nurfatimah

Abstract


Red glutinous rice is native from Pacitan and is still limited to local region consumption. The color of the rice flour showed that it has bioactive content, which is the potential to wider the use. The effect of pregelatinization using heat and moisture treatment by boiling on physicochemical (starch, amylose, anthocyanin, gel consistency, Lab color, SEM figure) and pasting properties of red glutinous rice flour was determined. The time and temperature of pregelatinization were 5, 10, and 15 minutes and 50°C, 60°C, and 60°C. The experiment was done with a completely randomized design with three replications. Starch content range to 62-77%, amylose content 3.29-5.75%, anthocyanin 2.64-6.71 mg/100g, Moisture 6.16-7.45, L 72.5-73.95, redness 5.11-6.00, yellowness 8.87-9.62, and gel consistency 9.7-12 cm. the increase of time and temperature of pregelatinization lead to decrease of amylose, starch, and anthocyanin content, and viscosity. After pregelatinization, the setback viscosity was lower it means that the rate of retrogradation is lower than native starch. SEM figure also showed that pregelatinization using heat and moisture treatment did not destroy the starch granules.

Keywords


red glutinuous rice, physicochemical properties, pasting properties, pregelatinization

Full Text:

PDF

References


Alves, R. M. L., Grossmann, M. V. E., & Silva, R. S. S. F. (1999). Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemistry, 67(2), 123–127. https://doi.org/10.1016/s0308-8146(99)00064-3

AOAC. (2005). Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists; Arlington, VA, USA.

Awolu, O. O., Odoro, J. W., Adeloye, J. B., & Lawal, O. M. (2020). Physicochemical evaluation and Fourier transform infrared spectroscopy characterization of quality protein maize starch subjected to different modifications. Journal of Food Science, 85(10), 3052–3060. https://doi:10.1111/1750-3841.15391

Dengate, H. N. (1984). The Non-reversibility of Pregelatinization Swelling of Wheat Starch A-granules in Saline Conditions. Starch-Stärke, 36(10), 342–343. https://doi.org/10.1002/star.19840361003

Frost, K., Kaminski, D., Kirwan, G., Lascaris, E., & Shanks, R. (2009). Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers, 78(3), 543–548. https://doi.org/10.1016/j.carbpol.2009.05.018

Gayary, M. A., & Mahanta, C. L. (2020). Optimization of process parameters of osmotic pressure treatment and heat moisture treatment for rice starch using response surface methodology. Journal of Food Measurement and Characterization, 14(5), 2862–2877. https://doi:10.1007/s11694-020-00531-z

Gbenga, B. L., Olakunle, O., & Adedayo, A. M. (2014). Influence of pregelatinization on the physicochemical and compressional characteristics of starches obtained from two local varieties of Dioscorea rotundata. IOSR Journal of Pharmacy (IOSRPHR), 4(6), 24–32. https://doi.org/10.9790/3013-040602024032

Gerçekaslan, K. E. (2021). Hydration level significantly impacts the freezable - and unfreezable -water contents of native and modified starches. Food Science and Technology, 41(2), 426–431. https://doi:10.1590/fst.04520

Ichikawa, H., Ichiyanagi, T., Xu, B., Yoshii, Y., Nakajima, M., & Konishi, T. (2001). Antioxidant Activity of Anthocyanin Extract from Purple Black Rice. Journal of Medicinal Food, 4(4), 211–218. https://doi.org/10.1089/10966200152744481

Kankate, D., Panpalia, S. G., Kumar, K. J., & Kennedy, J. F. (2020). Studies to predict the effect of pregelatinization on excipient property of maize and potato starch blends. International Journal of Biological Macromolecules, 164, 1206–1214. https://doi:10.1016/j.ijbiomac.2020.07.170

Kananurux, N., & Thongngam, M. (2015). P-STARCH-16 Comparison Properties of ‘Namwa’ Banana Starch and Flour after Hydrothermal Treatment. https://www.semanticscholar.org/paper/P-STARCH-16-Comparison-Properties-of-%E2%80%98Namwa%E2%80%99-Banana-Kananurux-Thongngam/990aff7759a466bebcb51632cbc976a96a11c291

Kong, S., & Lee, J. (2010). Antioxidants in milling fractions of black rice cultivars. Food Chemistry, 120(1), 278–281. https://doi.org/10.1016/j.foodchem.2009.09.089

Lai, H.-M. (2001). Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chemistry, 72(4), 455–463. https://doi.org/10.1016/s0308-8146(00)00261-2

Lai, H.-M., & Cheng, H.-H. (2004). Properties of pregelatinized rice flour made by hot air or gum puffing. International Journal of Food Science and Technology, 39(2), 201–212. https://doi.org/10.1046/j.0950-5423.2003.00761.x

Laovachirasuwan, P., Peerapattana, J., Srijesdaruk, V., Chitropas, P., & Otsuka, M. (2010). The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids and Surfaces B: Biointerfaces, 78(1), 30–35. https://doi.org/10.1016/j.colsurfb.2010.02.004

Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302, 125267. https://doi:10.1016/j.foodchem.2019.125267

Li, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237–244. https://doi.org/10.1016/j.foodhyd.2014.03.012

Lu, Z.-H., Sasaki, T., Li, Y.-Y., Yoshihashi, T., Li, L.-T., & Kohyama, K. (2009). Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocolloids, 23(7), 1712–1719. https://doi.org/10.1016/j.foodhyd.2009.01.009

Luga, M., & Mironeasa, S. (2019). A review of the hydrothermal treatments impact on starch based systems properties. Critical Reviews in Food Science and Nutrition, 1–26. https://doi:10.1080/10408398.2019.1664978

Lukman, A., Anggraini, D., Rahmawati, N., & Suhaeni, N. (2013). Pembuatan dan uji sifat fisikokimia pati beras ketan kampar yang dipragelatinasi. Penelitian Farmasi Indonesia, 1(2), 67-71. https://ejournal.unri.ac.id/index.php/FPFI/article/download/1249/1240

Majzoobi, M., Kaveh, Z., Blanchard, C. L., & Farahnaky, A. (2015). Physical properties of pregelatinized and granular cold water swelling maize starches in presence of acetic acid. Food Hydrocolloids, 51, 375–382. https://doi.org/10.1016/j.foodhyd.2015.06.002

Masniawati, A., Johannes, E., Latunra, I. A., & Paelongan, N. (2013). Karakterisasi Sifat Fisikokimia Beras Merah pada Beberapa Sentra Produksi Beras di Sulawesi Selatan. Jurnal Jurusan Biologi, FMIPA Universitas Hasanuddin. http://repository.unhas.ac.id/bitstream/handle/123456789/4234/ARTIKEL%20PUBLIKASI%20(Novita%20Paelongan).pdf?sequence=1

Mok, C., & Hettiarachchy, N. S. (1991). Heat Stability of Sunflower-Hull Anthocyanin Pigment. Journal of Food Science, 56(2), 553–555. https://doi.org/10.1111/j.1365-2621.1991.tb05322.x

Muchlisyiyah, J., Prasmita, H. S., Estiasih, T., & Laeliocattleya, R. A. (2016). Functional Properties of Pre-gelatinization Red Glutinous Rice. Jurnal Teknologi Pertanian, 17(3), 195–202. https://doi.org/10.21776/ub.jtp.2016.017.03.5

Murdifin, M., Pakki, E., Rahim, A., Syaiful, S. A., . I., Evary, Y. M., & Bahar, M. A. (2015). Physicochemical Properties of Indonesian Pigmented Rice (Oryza sativa Linn.) Varieties from South Sulawesi. Asian Journal of Plant Sciences, 14(2), 59–65. https://doi.org/10.3923/ajps.2015.59.65

Nakorn, K. N., Tongdang, T., & Sirivongpaisal, P. (2009). Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch - Stärke, 61(2), 101–108. https://doi.org/10.1002/star.200800008

Nam, S. H., Choi, S. P., Kang, M. Y., Koh, H. J., Kozukue, N., & Friedman, M. (2006). Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chemistry, 94(4), 613–620. https://doi.org/10.1016/j.foodchem.2004.12.010

Nimsung, P., Thongngam, M., & Naivikul, O. (2007). Compositions, morphological and thermal properties of green banana flour and starch. Kasetsart J, 41, 324-330. http://kasetsartjournal.ku.ac.th/kuj_files/2008/A0804241548285916.pdf

Okunlola, A., Adebayo, S., & Adeyeye, M. C. (2015). Solid State Characterization of Two Tropical Starches Modified by Pregelatinization and Acetylation: Potential as Excipients in Pharmaceutical Formulations. British Journal of Pharmaceutical Research, 5(1), 58–71. https://doi.org/10.9734/bjpr/2015/13445

Park, I.-M., Ibáñez, A. M., Zhong, F., & Shoemaker, C. F. (2007). Gelatinization and Pasting Properties of Waxy and Non-waxy Rice Starches. Starch - Stärke, 59(8), 388–396. https://doi.org/10.1002/star.200600570

Park, S., & Kim, Y.-R. (2020). Clean label starch: production, physicochemical characteristics, and industrial applications. Food Science and Biotechnology, 30(1), 1–17. https://doi:10.1007/s10068-020-00834-3

Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3–11. https://doi.org/10.1016/j.tifs.2009.07.004

Rini, Y., & Shoichi, G. (2018). Dispersion Characteristics of Pregelatinized Waxy Rice Starch and its Performance as an Emulsifier for Oil-in-Water Emulsions: Effect of Gelatinization Temperature and Starch Concentration. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.12.013

Salinas Moreno, Y., Sanchez, G. S., Hernandez, D. R., & Lobato, N. R. (2005). Characterization of Anthocyanin Extracts from Maize Kernels. Journal of Chromatographic Science, 43(9), 483–487. https://doi.org/10.1093/chromsci/43.9.483

Sofi, S. A., Singh, J., Mir, S. A., & Dar, B. N. (2020). In vitro starch digestibility, cooking quality, rheology and sensory properties of gluten-free pregelatinized rice noodle enriched with germinated chickpea flour. LWT, 133, 110090. https://doi:10.1016/j.lwt.2020.110090

Sompong, R., Siebenhandl-Ehn, S., Linsberger-Martin, G., & Berghofer, E. (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 124(1), 132–140. https://doi.org/10.1016/j.foodchem.2010.05.115

Tananuwong, K., & Tewaruth, W. (2010). Extraction and application of antioxidants from black glutinous rice. LWT-Food Science and Technology, 43(3), 476–481. https://doi.org/10.1016/j.lwt.2009.09.014

Valous, N. A., Gavrielidou, M. A., Karapantsios, T. D., & Kostoglou, M. (2002). Performance of a double drum dryer for producing pregelatinized maize starches. Journal of Food Engineering, 51(3), 171–183. https://doi.org/10.1016/s0260-8774(01)00041-3

Varga, M., Bánhidy, J., Cseuz, L., & Matuz, J. (2013). The anthocyanin content of blue and purple coloured wheat cultivars and their hybrid generations. Cereal Research Communications, 41(2), 284–292. https://doi.org/10.1556/crc.41.2013.2.10

Wani, A. A., Singh, P. , Shah, M. A., Schweiggert‐Weisz, U. , Gul, K. and Wani, I. A. (2012), Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties—A Review. Comprehensive Reviews in Food Science and Food Safety, 11: 417-436. https://doi.org/10.1111/j.1541-4337.2012.00193.x

Yodmanee, S., Karrila, T. T., & Pakdeechanuan, P. (2011). Physical, chemical and antioxidant properties of pigmented rice grown in Southern Thailand. International food research journal, 18(3).

Yulianingsih, R. & Shoichi, G. (2018). Dispersion Characteristics of Pregelatinized Waxy Rice Starch and its Performance as an Emulsifier for Oil-in-Water Emulsions: Effect of Gelatinization Temperature and Starch Concentration. Food Hydrocolloids, 95. 10.1016/j.foodhyd.2018.12.013.

Zhang, Z., Niu, Y., Eckhoff, S. R., & Feng, H. (2005). Sonication Enhanced Cornstarch Separation. Starch - Stärke, 57(6), 240–245. https://doi.org/10.1002/star.200400285




DOI: https://doi.org/10.21776/ub.rjls.2020.007.03.7

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.