Lubricant Oil Bioremediation by Rhodococcus erythropolis Bacteria and Indigenous Bacteria Isolated from Water Contaminated with Lubricant Oil

Frentina Murti Sujadi, Yahya Yahya, Andi Kurniawan, Abd. Aziz Amin

Abstract


The bioremediation system can be improved by using specific bacterial potential as oil-degrading bacteria which microorganisms can use hydrocarbons as a carbon source for their metabolic processes. The aim of this study is to identify R. erythropolis on degradation oil contamination and to obtain indigenous bacteria as new agent bacteria on bioremediation of oil contamination. The polluted water samples from used oil were taken from PPN Prigi, Trenggalek, East Java, Indonesia. The parameters considered were the detection and characterization of indigenous bacteria that degraded used oil. The density of bacteria was analyzed in the interval time of days 0, 2, 4, 6 and 7 and TPH was analyzed at final incubation. The results of this study indicate that the effectiveness of reducing oil concentration was used in testing the potential of bacteria from the highest was Pseudomonas aeruginosa which as indigenous bacteria isolated from water contaminated sites with application cell rate 1×108 cells/ml. It reduced of oil concentration up to 53%, and 1×106 cells/ml reduced oil concentration up to 47%. While, R. erythropolis with application cell rate 1×108 cells/ml reduced 47%. This result was found that Pseudomonas aeruginosa was effectively removed of oil concentration.

Keywords


Bioremediation; Pseudomonas aeruginosa; R. erythropolis; Lubricant

Full Text:

PDF

References


Ajoku, G. A. O. & Oduola, M. K. (2013). Kinetic Model of pH effect on Bioremediation of Crude Petroleum Contaminated Soil. 1. Model Development, American Journal of Chemical Engineering, 1(1), 6-10. doi: 10.11648/j.ajche.20130101.12.

Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H., A., Zhang, X., Ma, F. (2018). Principles of microbial degradation of petroleum hydrocarbons in the environment. The Egyptian Journal of Aquatic Research, 44(2), 71–76. doi: 10.1016/j.ejar.2018.06.001.

Bhattacharyya, S., Klerks, P. L. and Nyman, J. A. (2003). Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms. Environmental Pollution, 122(2), 205–215. doi: 10.1016/S0269-7491(02)00294-4.

Bourguignon, N., Isaac, P., Alvarez, H., Amoroso, M. J., Ferrero, M. A. (2014). Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. Journal of Basic Microbiology, 54(12), 1288–1294. doi: 10.1002/jobm.201400262.

Das, N. and Chandran, P. (2010). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 1–13. doi: 10.4061/2011/941810.

Dasari, S., Subbaiah, K. C. V., Wudayagiri, R., Valluru, L. (2014). Biosurfactant-mediated biodegradation of polycyclic aromatic hydrocarbons-naphthalene. Bioremediation Journal, 18(3), 258–265. doi: 10.1080/10889868.2014.933169.

Delille, D., Coulon, F. and Pelletier, E. (2004). Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Regions Science and Technology, 40(1–2), 61–70. doi: 10.1016/j.coldregions.2004.05.005.

Dhar, K., Dutta, S. and Anwar, M. N. (2014). Biodegradation of Petroleum Hydrocarbon by indigenous Fungi isolated from Ship breaking yards of Bangladesh, International Research Journal of Biological Sciences, 3(9), 22–30. http://www.isca.me/IJBS/Archive/v3/i9/4.ISCA-IRJBS-2014-62.pdf.

Dianou, D., Swadogo, A., Otoidobiga, H. C., Nitiema, L. W., Traoré, A. S. (2016). Optimization of Hydrocarbons Biodegradation by Bacterial Strains Isolated from Wastewaters in Ouagadougou, Burkina Faso: Case Study of SAE 40/50 Used Oils and Diesel. Journal of Agricultural Chemistry and Environment, 5(1), 1–11. doi: 10.4236/jacen.2016.51001.

El-khawaga, M. A., El-Din, R. A. S., Ghonem, R. A., Moussa, L. A., and (2015). Bioremediation of Petroleum Oil By Pseudomonas Aeruginosa and Pseudomonas Fluorescens ( Biotype a) Isolated From Petroleum Oil Contaminated Soil. Egypt J. Biotechnol., 50, 65–81.

El-Rahim, W. M. A., El-Ardy, O. A. M. and Mohammad, F. H. A. (2009). The effect of pH on bioremediation potential for the removal of direct violet textile dye by Aspergillus niger, Desalination. Desalination, 249(3), 1206–1211. doi: 10.1016/j.desal.2009.06.037.

Fu, W. J., Chi, Z., Ma, Z. -C., Zhou, H. -X., Liu, G. -L., Lee, C. -F., Chi, Z., -M. (2015). Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Applied Microbiology and Biotechnology, 99(18), 7481–7494. doi: 10.1007/s00253-015-6840-6.

Hozumi (2013). Bioremediasi Lahan Tercemar Limbah Lumpur Minyak Menggunakan Campuran Bulking Agents yang Diperkaya Konsorsia Mikroba Berbasis Kompos Iradiasi. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 9(2), 139–150.

Nucera, D. M., Maddox, C. W., Hoien-Dalen, P., Weigel, R. M. (2006). Comparison of API 20E and invA PCR for identification of Salmonella enterica isolates from swine production units. Journal of Clinical Microbiology, 44(9), 3388–3390. doi: 10.1128/JCM.00972-06.

Obahiagbon, K. O., Amenaghawon, A. N., Agbonghae, E. (2014). Effect of Initial pH on the Bioremediation of Crude Oil Polluted Water Using a Consortium of Microbes. The Pasific Journal of Science and Technology, 15(1), 452–457.

Obi, E. I., Kamgba, F., Obi, D. (2014). Techniques of Oil Spill Response in the sea, IOSR Journal of Applied Physics, 6(1), 36–41. doi: 10.9790/4861-06113641.

Pawar, R. M. (2015). The Effect of Soil pH on Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHS). Journal of Bioremediation & Biodegradation, 6(3). doi: 10.4172/2155-6199.1000291.

Peixoto, R. S., Vermelho, A. B. and Rosado, A. S. (2011). Petroleum-Degrading Enzymes: Bioremediation and New Prospects. Enzyme Research, 2011(3), 1–7. doi: 10.4061/2011/475193.

Puspito, G. (2013). Jenis Umpan dan Bentuk Perangkap Plastik yang Efektif untuk Menangkap Rajungan. Marine Fisheries Journal of Marine Fisheries Technomogu and Management, 2(2), 11. doi: 10.29244/jmf.2.2.111-119.

Qin, X., Tang, J. C., Li, D.S., Zhang, Q. M. (2012). Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology, 55(3), 210–217. doi: 10.1111/j.1472-765X.2012.03280.x.

Romo, D. M. R., Obando, M. C., Perdomo, M. I. G., Bravo, D., Izquierdo, P., F. (2013). Characterization of hydrocarbonoclastic marine bacteria using the 16S rRNA gene: a microcosm case study. Dyna, 80(180), 122–129. http://digital.unal.edu.co/index.php/dyna/article/view/26270.

Schunck, W. -H., Blasig, R., Mauersberger, S., Riege, P. (2004). Degradation of long-chain n-alkanes by the yeast Candida maltosa. Applied Microbiology and Biotechnology, 28(6), 589-597. doi: 10.1007/bf00250418.

Septriady, D. A. (2017). Peningkatan Kualitas Supply Chain Material Melalui Teknologi Material Traceability System di PT. Pertamina Gas Eastern Java Area Operation. Journal Earth Energy Engineering, 6(1), 11–29.

Shah, M. P., Patel, K. A. and Darji, A. M. (2013). Microbial Degradation and Decolorization of Methyl Orange Dye by an Application of Pseudomonas Spp. ETL-1982. International Journal of Environmental Bioremediation & Biodegradation, 1(1), 26–36. doi: 10.12691/ijebb-1-1-5.

Subramaniam, S., Kansrajh, C., Murugan, D., Satyan, R. S. Kiruthika, S., and Tharanipriya, A. (2014). Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. International Journal of Environmental Science and Technology, 11(2), 367–376. doi: 10.1007/s13762-013-0366-1.

Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., Hamzah, A. (2014). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration and Biodegradation, 90(May 2014), 115–122. doi: 10.1016/j.ibiod.2014.03.006.

Thavasi, R., Jayalakshmi, S., Balasubramanian, T., and Banat, I. M. (2007). Effect of Salinity, Temperature, pH and Crude Oil Concentration on Biodegradation of Crude Oil by Pseudomonas aeruginosa. J. Biol. Environ., Sci, 1(2), 51–57.

Viyakarn, V., Kuanui, P., Chavanich, S. A., Omori, M., Lin, C. (2015). Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues. Ocean Science Journal, 50(2), 263–268. doi: 10.1007/s12601-015-0023-3.

Yan, K., Yang, M. -Z., Gao, S., Li, J. -Y. (2018) Variation characteristics and influencing factors of free water evaporation in recent 58 years in Tai’an area. MATEC Web of Conferences, 246(9), 02003. doi: 10.1051/matecconf/201824602003.

Yetti, E. (2016). Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas Journal of Biological Diversity, 17(2), 857–864. doi: 10.13057/biodiv/d170263.

Yu, Y. T., Chen, T. Y., Kao, C. M., Chiou, H. Y. (2012). Application of Oxygen-Releasing Material to Enhance In Situ Aerobic Bioremediation. Advanced Materials Research, 430–432(January), 1401–1404. doi: 10.4028/www.scientific.net/amr.430-432.1401.

Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., and Marhaba, T. (2018). PH Effect on Heavy Metal Release from a Polluted Sediment. Journal of Chemistry, 2018, 1-7. doi: 10.1155/2018/7597640




DOI: https://doi.org/10.21776/ub.rjls.2020.007.01.7

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.