Minimum Inhibitory Concentration of Marine Microalgae Dunaliella salina on Fish Pathogenic Bacteria Edwardsiella tarda

Rusmawanto Rusmawanto, Arief Prajitno, Ating Yuniarti

Abstract


Dunaliella salina is a type of marine microalgae. The objective of this research were investigated the effect of D. salina to inhibit the growth of E. tarda. The method used in this study was examined antibacterial activity of D. salina using disc diffusion and co culture test. The secondary metabolite compound in D. salina was tested using phytochemical screening and FTIR methods. The results obtained D. salina extracted using n-hexane showed the best activity for inhibiting the growth of E. tarda. Minimum concentration of 100 mg.L-1 crude extract can inhibit E. tarda with a total of bacterial colonies 137x1011 CFU.mL-1. The phytochemical test results showed that D. salina extract using n-hexane contained flavonoids, saponins, alkaloids, terpenoids and phenols. The FTIR analysis showed phenol and carotene compounds are one of the secondary metabolites that can be used as antibacterial. It can be concluded that the extract has strong antibacterial activity against E. tarda and potentially as antibacterial in aquaculture.


Keywords


Antimicrobial; Dunaliella salina; Edwardsiella tarda; Minimum inhibitory; Concentration

Full Text:

PDF

References


Anusha, P., and R. S. Bai. (2017). Phytochemical profile and antimicrobial potential of methanolic extracts of bark and leaf of Quassia indica (Gaertn) Nooteb. The Journal of Phytopharmacology, 6(5), 269–276.

Austin, B., and D. A. Austin. (2016). Bacterial Fish Patogens (Sixth). United Kingdom: Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-32674-0

Bashir, K. M. I., J. H. Lee, M. J. Petermann, A. A. Shah, S. J. Jeong, M. S. Kim, N. G. Park and M. G. Cho. (2018). Estimation of antibacterial properties of chlorophyta, rhodophyta and haptophyta microalgae species. Microbiology and Biotechnology Letters, 46(3), 225–233. https://doi.org/10.4014/mbl.1802.02015

Bbosa, G. S., G. Wong, D. B. Kyegombe and J. O. Okeng. (2014). Effects of intervention measures on irrational antibiotics/antibacterial drug use in developing countries: A systematic review. Health, 06(02), 171-187.https://doi.org/10.4236/health.2014.62027

Bhagavathy, S., P. Sumathi and M. Madhushree. (2011). Antimutagenic assay of carotenoids from green algae Chlorococcum humicola using Salmonella typhimurium TA98, TA100 and TA102. Asian Pacific Journal of Tropical Disease, 1(4), 308–316. https://doi.org/10.1016/S2222-1808(11)60073-X

Bhakuni, D. S. and D. S. Rawat. (2005). Bioactive marine natural products. Bioactive Marine Natural Products. https://doi.org/10.1007/1-4020-3484-9

Bhat, V. B. and K. M. Madyastha (2000). C-Phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochemical and Biophysical Research Communications, 275(1), 20-25. https://doi.org/10.1006/bbrc.2000.3270

Cakmak, Y. S., M. Kaya and M. A. Ozusaglam. (2014). Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI Journal, 13, 679–690.

Candrasari, A., M. A. Romas, M. Hasbi and O. R. Astuti. (2012). Uji daya antimikroba ekstrak etanol daun sirih merah (Piper Crocatum Ruiz & Pav.) terhadap pertumbuhan Staphylococcus aureus ATCC 6538, Eschericia coli ATCC 11229 dan Candida. Biomedika, 4(1), 9–16.

Cao, L., W. Wang, Y. Yang, C. Yang, Z. Yuan, S. Xiong and J. Diana. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research, 14(7), 452–462. https://doi.org/10.1065/espr2007.05.426

Cardozo, K. H. M., T. Guaratini, M. P. Barros, V. R. Falcão, A. P. Tonon, N. P. Lopes, S. Campos, M. A. Torres, A. O. Souza, P. Colepicolo and E. Pinto. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology, 146, 60–78. https://doi.org/10.1016/j.cbpc.2006.05.007

Davis, W. W. and T. R. Stout. (1971). Disc plate method of microbiological antibiotic assay. Applied Microbiology, 22(4), 659-665.

Devi, T. B., T. J. Abraham and D. Kamilya. (2016). Susceptibility and pathological consequences of catla, Catla catla (Hamilton) experimentally infected with Edwardsiella tarda. Archives of Polish Fisheries, 24(4), 209–217. https://doi.org/10.1515/aopf-2016-0018

Ely, R., T. Supriya and C. G. Naik. (2004). Antimicrobial activity of marine organisms collected off the coast of South East India. Journal of Experimental Marine Biology and Ecology, 309(1), 121–127. https://doi.org/10.1016/j.jembe.2004.03.010

Evans, W. C. (2002). Pharmacognosy. Fifteenth Edition. https://doi.org/10.1016/B978-0-7020-2933-2.00017-4

Falaise, C., C. François, M. A. Travers, B. Morga, J. Haure, R. Tremblay, F. Turcotte, P. Pasetto, R. Gastineau, Y. Hardivillier, V. Leignel and J. L. Mouget. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs, 14(9), 1–27. https://doi.org/10.3390/md14090159

Firma, A. R. R., U. Sari, C. Chusbul and A. Amri. (2012). Detection of Edwardsiella tarda in catfish (Clarias sp.) by fluorescent antibody technique (FAT). Jurnal Akuakultur Indonesia, 11(1), 96–102.

Ghasemzadeh, A. and N. Ghasemzadeh. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research, 5(31), 6697–6703. https://doi.org/10.5897/jmpr11.1404

Guedes, A. C., H. M. Amaro and F. X. Malcata. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625–644. https://doi.org/10.3390/md9040625

Herrero, M., L. Jaime, P. J. Martín-Álvarez, A. Cifuentes and E. Ibáñez. (2006). Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. Journal of Agricultural and Food Chemistry, 54(15), 5597–5603. https://doi.org/10.1021/jf060546q

Hosseini, S. R. P., O. Tavakoli and M. H. Sarrafzadeh. (2017). Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina. Journal of Supercritical Fluids, 121, 89–95. https://doi.org/10.1016/j.supflu.2016.11.006

Jafari, S., M. A. Mobasher, S. Najafipour, Y. Ghasemi, M. Mohkam, M. A. Ebrahimi and N. Mobasher. (2018). Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur Journal of Natural Pharmaceutical Products, 13(2). https://doi.org/10.5812/jjnpp.13226

Jannata, R. H., A. Gunadi and T. Ermawati. (2014). Antibacterial activity of manalagi apple peel (Malus sylvestris Mill.) extract on the growth of Streptococcus mutans, 2(1), 23–28.

Jin, R., Y. Hu, B. Sun, X. Zhang and L. Sun. (2012). Edwardsiella tarda sialidase: Pathogenicity involvement and vaccine potential. Fish and Shellfish Immunology, 33(3), 514–521. https://doi.org/10.1016/j.fsi.2012.06.002

Kadlec, K., E. V. Duijkeren, J. A. Wagenaar and S. Schwarz. (2011). Molecular basis of rifampicin resistance in methicillin-resistant Staphylococcus pseudintermedius isolates from dogs. Journal of Antimicrobial Chemotherapy, 66(6), 1236–1242. https://doi.org/10.1093/jac/dkr118

Kathleen, M. M., L. Samuel, C. Felecia, E. L. Reagan, A. Kasing, M. Lesley and S. C. Toh. (2016). Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo. International Journal of Microbiology, 2016, 1-9. https://doi.org/10.1155/2016/2164761

Keskin, D., D. Oskay and M. Oskay. (2010). Antimicrobial activity of selected plant spices marketed in the West Anatolia. International Journal of Agriculture and Biology, 12(6), 916–920.

Kholil, I., M. M. M. Hossain, M. S. Neowajh, M. S. I. Islam and M. Kabir. (2015). Comparative efficiency of some commercial antibiotics against Pseudomonas infection in fish. International Journal of Fisheries and Aquatic Studies, 2(23), 114–117.

Kokou, F., P. Makridis, M. Kentouri and P. Divanach. (2012). Antibacterial activity in microalgae cultures. Aquaculture Research, 43(10), 1520–1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x

Krishnika, A., P. B. Bhanupriya and B. B. Nair. (2011). Antibacterial activity of eight marine microalgae against a few gram negative bacterial pathogens. Journal of Pharmacy Research, 4(9), 3024–3026.

Kumar, S. and A. K. Pandey. (2013). Chemistry and Biological activities of flavonoids: an overview. The Scientific World Journal, 1–16. https://doi.org/Volumhttp://dx.doi.org/10.1155/2013/162750

Labh, S. N. and S. R. Shakya. (2014). Application of immunostimulants as an alternative to vaccines for health management in aquaculture. Nternational Journal of Fisheries and Aquatic Studies, 2(1), 153–156.

Lamers, P. P., C. C. W. van de Laak, P. S. Kaasenbrood, J. Lorier, M. Janssen, R. C. H. D. Vos, R. J. Bino, R. H. Wijffels. (2010). Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering, 106(4), 638–648. https://doi.org/10.1002/bit.22725

Li, J., z. Mo, G. Li, P. Xiao and J. Huang. (2015). Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish and Shellfish Immunology, 43(1), 175–180. https://doi.org/10.1016/j.fsi.2014.12.018

Liu, X., J. C. Steele and X. Z. Meng. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161–169. https://doi.org/10.1016/j.envpol.2017.01.003

Mehana, E., A. Rahmani and S. Aly. (2014). Immunostimulants and Fish Culture: An Overview. Annual Research & Review in Biology, 5(6), 477–489. https://doi.org/10.9734/arrb/2015/9558

Mendes, R. L., B. P. Nobre, M. T. Cardoso, A. P. Pereira and A. F. Palavra. (2003). Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta, 356, 328–334. https://doi.org/10.1016/S0020-1693(03)00363-3

Mishra, A., A. K. Sharma, S. Kumar, A. K. Saxena and A. K. Pandey. (2013). Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Research International, 2013. https://doi.org/10.1155/2013/915436

Narwiyani, S. and K. Kurniasih. (2011). Pathogenicity comparison of Edwardsiella tarda infection in goldfish (Charassius auratus) and celebes rainbow (Telmatherina celebensis). Jurnal Riset Akuakultur, 6(2), 291–301. https://doi.org/10.15578/jra.6.2.2011.291-301

Ogbonne, F. C., E. R. Ukazu and F. C. Egbe. (2018). Antibiotics resistance pattern and plasmid profiling of Edwardsiella tarda isolated from Heterobranchus longifilis. Journal of Biosciences and Medicines, 06(04), 95–105. https://doi.org/10.4236/jbm.2018.64008

Pandey, A. K., A. K. Mishra, A. Mishra, S. Kumar and A. Chandra. (2010). Therapeutic potential of c. zeylanicum extracts : an antifungal and antioxidant perspective. International Journal of Biological and Medical Research, 1(4), 228–233.

Park, S. B., T. Aoki and T. S. Jung. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research, 43(1), 1–11. https://doi.org/10.1186/1297-9716-43-67

Pasquet, V., J. R. Chérouvrier, F. Farhat, V. Thiéry, J. M. Piot, J. B. Bérard, R. Kaas, B. Serive, T. Patrice, J. P. Cadoret and L. Picot. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67. https://doi.org/10.1016/j.procbio.2010.07.009

Prasad, N. D., B. G. Rao, B. S. Rao, T. M. Rao and D. V. S. Praneeth. (2012). Quantification of phytochemical constituents and in-vitro antioxidant activity of Mesua ferrea leaves. Asian Pacific Journal of Tropical Biomedicine, 2, S539–S542. https://doi.org/10.1016/S2221-1691(12)60269-X

Qiao, M., G. G. Ying, A. C. Singer and Y. G. Zhu. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172. https://doi.org/10.1016/j.envint.2017.10.016

Senguttuvan, J., S. Paulsamy, and K. Karthika. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(1), 359–367. https://doi.org/10.12980/apjtb.4.2014c1030

Shin, D. M., S. Hossain, SHMP Wimalasena and G. J. Heo. (2017). Antimicrobial resistance and virulence factors of Edwardsiella tarda isolated from pet turtles. Pakistan Veterinary Journal, 37(1), 85–89. https://doi.org/10.1097/QCO.0b013e3283638104

Sudalayandi, K., A. Kumar, R. Sessler, R. T. Sayre, V. Falcoa, U. Ihemere, J. Ndunguru and N. Narayanan. (2012). Determination of fatty acids and proteins from the fresh water alga Chlamydomonas reinhardtii CC 2137 and its antagonism against aquatic bacteria. Pakistan Journal of Botany, 44(6), 2139–2144.

Surendhiran, D., M. Vijay, A. R. Sirajunnisa, T. Subramaniyan, A. S. Shellomith and K. Tamilselvam. 2014. A green synthesis of antimicrobial compounds from marine microalgae Nannochloropsis oculata. Journal of Coastal Life Medicine, 2(11), 859–863. https://doi.org/10.12980/jclm.2.2014apjtb-2014-0138

Suresh, S., S. Karthikeyan and K. Jayamoorthy. (2016). FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. Journal of Science: Advanced Materials and Devices, 1(3), 343–350. https://doi.org/10.1016/j.jsamd.2016.08.004

Syafitrianto, I., A. Aqmal and M. N. H. Lande. (2016). Variasi Aeromonas pada ikan sidat (Anguilla sp.) yang dilalulintaskan melalui bandar udara palu. Biogenesis: Jurnal Ilmiah Biologi, 4(1), 10–15. https://doi.org/10.24252/bio.v4i1.1114

Syed, S., A. Arasu and I. Ponnuswamy. (2015). The uses of Chlorella vulgaris as antimicrobial agent and as a diet: The presence of bio-active compounds which caters the vitamins, minerals in general. International Journal of Bio-Science and Bio-Technology, 7(1), 185–190. https://doi.org/10.14257/ijbsbt.2015.7.1.19

Trivedi, N., S. Tandon and A. Dubey. (2017). Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. African Journal of Biotechnology, 16(27), 1507–1512. https://doi.org/10.5897/ajb2017.15959




DOI: https://doi.org/10.21776/ub.rjls.2019.006.02.1

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.