The Effect of Moringa Oleifera Leaves Powder to Level of Serum Superoxide Dismutase (Sod), Lead (Pb), Zink (Zn)And Memory Function of Rat (Rattus Norvegicus) Wistar Strain Model of Autism That is Exposed by Pb

Agustiana Dwi Indiah Ventiyaningsih, Hidayat Sujuti, Winda Nurtika, Septi Nur Rachmawati, Nurshalilah Nurshalilah, Raudhatul Jannah

Abstract


Lead exposure (Pb) may aggravate the decrease in serum SOD levels, memory function reduction and social interaction in autism. This study aims to determine the effect of Moringa oleifera on autism models of rat exposed to lead. The five groups of rat exposed to tin were studied: normal rat (C -), autistic rat (C +) and autism rats given 180 mg (T1), 360 mg (T2) or 720 mg (T3) oleifera leaves powder. Lead acetate is given through a filler tube (0.5 gr / kg) and powdered moringa leaves mixed with feed. The results showed that serum SOD levels were lower in autistic rat than normal rat and intake of Moringa olifeifera leaves powder increased serum SOD levels in autistic rats but was not seen in normal rat. The autistic rat had higher lead levels but lower zinc levels, which were not influenced by Moringa olifeira. The social interaction between rats is strongly influenced by unbidden lead with Moringa olifeira, both in normal rat and in autistic rat. Moringa oleifera will increase serum SOD levels in autistic rats but not at normal levels. Moringa olifeira does not protect significantly rat from lead causing less social interaction, nor does it lower serum Pb levels or increase Zn levels. Moringa leaves powder does not affect memory significantly.

Keywords


Autism; Memory; Moringa Oleifera; Pb; Zn; Social Interaction; SOD

Full Text:

PDF

References


American Psychiatric, A. (2013). Diagnostic and statistical manual of mental disorders, Fifth Edition https://doi.org/10.1176/appi.books.9780890425596.

Barltrop, D., Khoo, H. E. (1975). The Influence of Nutritional Factors on Lead Absorption. Postgraduate Medical Journal, 51(601), 795-800.

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. WAO Journal, 5(1), 9–19. doi: 10.1097/WOX.0b013e3182439613.

Bjørklund, G. (2013). The role of zinc and copper in autism spectrum disorders. Acta Neuroboil Exp. (Wars), 73(2): 225-236.

Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. a, Jones, J. R., & Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011– 2012. National Health Statistics Reports, (65), 1–11.

Bodiga, S., & Krishnapillai, M. N. (2007). Concurrent repletion of iron and zinc reduces intestinal oxidative damage in iron- and zinc-deficient rats. World Journal of Gastroenterology, 13(43), 5707–5717.

Bruening, K., Kemp, F. W., Simone, N., Holding, Y., Louria, D. B., Bogden, J. D. (1999). Dietary Calcium Intakes of Urban Children at Risk of Lead Poisoning. Environmental Health Perspectives, 107(6), 431-435.

Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 14(3), 281–292. doi: 10.31887/DCNS.2012.14.3/pchaste.

Chen, Y. -W., Lin, H. -C., Ng, M. -C., Hsiao, Y. -H., Wang, C. -C., Gean, P. -W., & Chen, P. S. (2014). Activation of mGluR2/3 underlies the effects of N-acetylcystein on amygdala-associated autism-like phenotypes in a valproate-induced rat model of autism. Frontiers in Behavioral Neuroscience, 8(June), 1–9. https://doi.org/10.3389/fnbeh.2014.00219

Christensen, D. L., Baio, J., Braun, K. V. N., Bilder, D., Charles, J., Constantino, J. N., … Yeargin-Allsopp, M. (2016). Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. Morbidity and Mortality Weekly Report. Surveillance Summaries, 65(3), 1–23.

https://doi.org/10.15585/mmwr.ss6503a1.

Company, C. C. (2010). Superoxide Dismutase Assay Kit, (706002), 1–5. https://www.caymanchem.com/product/706002/superoxide-dismutase-assay-kit.

Farr, S. A., Poon, H. F., Dogrukol-Ak, D., Drake, J., Banks, W. A., Eyerman, E., … Morley, J. E. (2003). The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. Journal of Neurochemistry, 84(5), 1173–1183. https://doi.org/10.1046/j.1471-4159.2003.01580.x.

Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2.

Illiandri, O., Widjajanto, E., Mintaroem, K. (2010). Moringa oleifera Meningkatkan Fungsi Memori pada Tikus Model Kurang Energi Protein. Jurnal Kedokteran Brawijaya, 26(1), 28–31.

James, S. J., Melnyk, S., Jernigan S., Cleves, M. A., Halsted, C. H., Wong, D. H., Cutler, P., Bock, K., Boris, M., Bradstreet, J. J., Baker, S. M., Gaylor, D. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet B Neuropsychiatr. Genet., 141b(8), 947–956.

Jayalakshmi, S. & Platel, K. (2016). Compromised zinc status of experimental rats as a consequence of prolonged iron & calcium supplementation. Indian J. Med. Res., 143(2), 238–244.

La Fata, G., Weber, P., & Mohajeri, M. H. (2014). Effects of Vitamin E on Cognitive Performance during Ageing and in Alzheimer’s Disease. Nutrients, 6(12), 5453–5472. https://doi.org/10.3390/nu6125453.

Lidsky, T. I. & Schneider, J. S. (2005). Autism and autistic symptoms associated with childhood lead poisoning. The Journal of Applied Research, 5(1), 80–87.

Markiewicz-Górka, I., Januszewska, L., Michalak, A., Prokopowicz, A., Januszewska, E., Pawlas, N., & Pawlas, K. (2015). Effects of chronic exposure to lead, cadmium, and manganese mixtures on oxidative stress in rat liver and heart. Archives of Industrial Hygiene and Toxicology, 66(1), 51–62. https://doi.org/10.1515/aiht-2015-66-2515

Markram, K., Rinaldi, T., Mendola, D. L., Sandi, C., & Markram, H. (2008). Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology, 33(4), 901–912. https://doi.org/10.1038/sj.npp.1301453

Mahardhika, R. V., and Budiono, I.(2012). Desain Interior Pusat Rehabilitasi Autisme dengan Konsep “Season in Wonderland Revolution Clinic” dan “ Free Running Building” sebagai Sarana Terapi Interior Partisipatif, Jurnal Sains dan Seni Pomits, 1(1), 1–6.

Rahayu, S. M. (2014). Deteksi dan intervensi dini pada anak autis. Jurnal Pendidikan Anak, 3(1) : 420-428.

Schultz, R. T. (2005). Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23(2–3 SPEC. ISS.), 125–141. https://doi.org/10.1016/j.ijdevneu.2004.12.012.

Townsend, D. M., Tew, K. D., & Tapiero, H. (2003). The importance of glutathione in human disease. Biomedicine and Pharmacotherapy, 57(3-4), 145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

Wang, C. C., Lin, H. C., Chan, Y. H., Gean, P. W., Yang, Y. K., & Chen, P. S. (2013). 5-HT1A-receptor agonist modified amygdala activity and amygdala-Associated social behavior in a valproate-induced rat autism model. International Journal of Neuropsychopharmacology, 16(9), 2027–2039. https://doi.org/10.1017/S1461145713000473

Witt, K. A. (2013). The Nutrient Content of Moringa oleifera Leaves. Echo, 1(1) : 1-6

Yang, G., Lai, C. S. W., Cichon, J., Ma, L., Li, W., Gan, W., -B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173–1178. DOI: 10.1126/science.1249098.

Yasuda, H., Kobayashi, M., Yasuda, Y., & Tsutsui, T. (2013). Estimation of autistic children by metallomics analysis. Scientific Reports, 3(1199): 1199. https://doi.org/10.1038/srep01199




DOI: https://doi.org/10.21776/ub.rjls.2020.007.01.6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.