Simulation of Tumor Growth Model and Its Interaction with Natural-Killer Cells and T Cells

Cholifatul Maulidiah, Trisilowati Trisilowati, Ummu Habibah

Abstract


This research studies about tumor growth model by involving immune system. Cells in the immune system, for instance natural killer (NK) cells and T cells, have prominent role in recognizing and eliminating tumor cells. In this paper, we construct the tumor growth model consisting of four populations namely tumor cells, NK cells, CD8+T cells, and CD4+T cells which is in the form of a non-linear differential equation. The analysis result shows that there are three tumor free equilibrium points and one coexisting equilibrium point. Some tumor free equilibrium and tumor equilibrium point exist and it is stable under certain conditions. Finally, numerical simulation is carried out to illustrate analysis result. From sensitivity analysis, it is found that the most  sensitive parameter that influence the growth rate of tumor cells are the reciprocal carrying capacity of tumor cells and the killing rate of CD8+T cells by tumor cells.


Keywords


immune system;tumor cells;simulation

Full Text:

PDF

References


Baratawidjaja, K. G and Rengganis, I. 2013. Imunologi Dasar edisi ke-10. Jakarta: Balai Penerbit Fakultas Kedokteran Universitas Indonesia.

Bellanti, J. A. 1993. Imunologi III. Yogyakarta: Gadjah Mada University Press.

De Pillis, L. G., Radunskaya, A. 2003. The Dynamics of an Optimally Controlled Tumor Model: A case Study. Mathematical and Computer Modelling, 37(11): 1221-1244.

De Pillis, L. G., Radunskaya, A., Wiseman, C. L. 2005. A Validated Mathematical Model of Cell-Mediated Immune Response to Tumor Growth. Cancer Res., 65(17): 7950-7958.

De Pillis, L. G., Gu, W., and Radunskaya, A. 2006. Mixed Immunotherapy and Chemotherapy of Tumors: modeling, applications and biological interpretations. Journal of Theoretical Biology, 238(4): 841-862.

De Pillis, L. G., Fister, K.R., Gu, W., Collins, C., Daub, M., Gross, D., Moore, J., Preskill, B. 2009. Mathematical Model Creation for Cancer Chemo-Immunotherapy. Computational and Mathematical Methods in Medicine, 10 (3): 165-184.

Diananda, R. 2009. Panduan Lengkap Mengenal Kanker. Yogyakarta: Mirza Media Pustaka.

Isaeva, O.G., and Osipov, V.A. 2009. Different Strategies for Cancer Treatment: Mathematical Modelling. Computational and Mathematical Methods in Medicine, 10 (4): 253-272.

Kementerian Kesehatan RI. 2017. Kementerian Kesehatan Ajak Masyarakat Cegah dan Kendalikan Kanker. Retrieved on March 25, 2018, form http://www.depkes.go.id/article/kementerian-kesehatan-ajak-masyarakat-cegah-dan-kendalikan-kanker.html.

Mahasa, K. J., Ouifki, R., Eladdadi, A., and De Pillis, L. G. 2016. Mathematical Model of Tumor-immune Surveilance. Journal of Theoretical Biology, 404: 312-330.

Mamat, M., Subiyanto, S., and Kartono, A. 2013. Mathematical Model of Cancer Treatments Using Immunotherapy, Chemotherapy and Biochemotherapy. Applied Mathematical Sciences, 7(5): 247-261.

Sharma, S., and Samanta, G. P. 2013. Dynamical Behaviour of a Tumor-Immune System with Chemotherapy and Optimal Control. Journal of Nonlinear Dynamics, 2013(article ID 608598) 13 pages. http://doi.org/10.1155/2013/608598.

Trisilowati, T., McCue, S., and Mallet, D. G. 2013. An Optimal control model of dendritic cell treatment of a growing tumour. Anziam J., 54(CTAC2012): C664-C680.




DOI: https://doi.org/10.21776/ub.rjls.2019.006.03.5

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.