Catechins of GMB-4 Clone Inhibits Adipogenesis Through PPAR-γ and Adiponectin in Primary Culture of Visceral Preadipocyte of Rattus Norvegicus Wistar

Aswaty Nur, Retty Ratnawati, Diana Lyrawati

Abstract


Catechins of green tea (Camelia sinensis) GMB4 clone may serve as a potential therapeutic antiobesity agent, probably through its effects on preadipocytes. Thus, to evaluate such antiobesity effects, we performed series of in vitro experiments using primary cultures of visceral preadipocytes from Rattus norvegicus strain Wistar. Quick Cell Proliferation assay, Oil Red-O staining, ELISA and immunocytochemistry were used to determine the effects of 25 µM, 50 µM, 75 µM, and 100 µM catechins on primary culture of preadipocytes, particularly on cell viability and differentiation as well as on expression of relevant obesity genes i. e. PPARγ and adiponectin levels. The results showed that there were no significant differences on preadipocytes viability among control and catechins treatments except in cells treated with 50 µM catechins (means±SD=128±2.47) which resulted 28% higher viability than control (p= 0.037). Catechins inhibited preadipocytes differentiation into adipocytes, at 100 µM up to 78% lower than control. The level of PPARy apparently was reduced by catechins, but statistically significant only at 75 μM (p= 0.029). In contrast, the adiponectin level on preadipocytes increased by catechins at 75 µM and 100 µM (0.786±0.126 and 0.673 ±0.319 ng/ml; control: 0.077±0.017, p ≤0.01). In conclusions, our data revealed that desired antiobesity effects of catechins of green tea GMB4 clone on visceral preadipocytes were concentration-dependent; at dosage 50 µM catechins enhanced cell viability; at more than 75 µM inhibited differentiation of preadipocytes and was associated with lower PPARy and higher adiponectin levels.


Keywords


Green tea GMB4 clone; catechins; preadipocytes; PPARγ; adiponectin

Full Text:

PDF

References


Ajuwon, K. M., & Spurlock, M. E. (2005). Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(5), R1220–R1225. https://doi.org/10.1152/ajpregu.00397.2004

Ardévol, A., Bladé, C., Salvadó, M. J., & Arola, L. (2000). Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. International Journal of Obesity, 24(3), 319–324.

Berger, J. P. (2005, March 1). Role of PPAR[gamma], transcriptional cofactors, and adiponectin in the regulation of nutrient metabolism, adipogenesis and insulin action: view from the chair. Retrieved March 1, 2018, from http://link.galegroup.com/apps/doc/A188448450/AONE?sid=googlescholar

Bost, F., Aouadi, M., Caron, L., & Binétruy, B. (2005). The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 87(1), 51–56. https://doi.org/10.1016/j.biochi.2004.10.018

Broadhurst, C. L., Polansky, M. M., & Anderson, R. A. (2000). Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. Journal of Agricultural and Food Chemistry, 48(3), 849–852.

Chien, P.-J., Chen, Y.-C., Lu, S.-C., & Sheu, F. (2005). Dietary flavonoids suppress adipogenesis in 3T3-L1 preadipocytes. Journal of Food and Drug Analysis, 13, 168–175+195.

Cho, S. Y., Park, P. J., Shin, H. J., Kim, Y.-K., Shin, D. W., Shin, E. S., … Lee, T. R. (2007). (−)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. American Journal of Physiology-Endocrinology and Metabolism, 292(4), E1166–E1172. https://doi.org/10.1152/ajpendo.00436.2006

Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I., & Kim, J. B. (2016). Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Frontiers in Endocrinology, 7. https://doi.org/10.3389/fendo.2016.00030

Furuyashiki, T., Nagayasu, H., Aoki, Y., Bessho, H., Hashimoto, T., Kanazawa, K., & Ashida, H. (2004). Tea Catechin Suppresses Adipocyte Differentiation Accompanied by Down-regulation of PPARγ2 and C/EBPα in 3T3-L1 Cells. Bioscience, Biotechnology, and Biochemistry, 68(11), 2353–2359. https://doi.org/10.1271/bbb.68.2353

Harmon, A. W., Patel, Y. M., & Harp, J. B. (2002). Genistein inhibits CCAAT/enhancer-binding protein beta (C/EBPbeta) activity and 3T3-L1 adipogenesis by increasing C/EBP homologous protein expression. The Biochemical Journal, 367(Pt 1), 203–208. https://doi.org/10.1042/BJ20020300

Hemmrich, K., Von Heimburg, D., Cierpka, K., Haydarlioglu, S., & Pallua, N. (2005). Optimization of the differentiation of human preadipocytes in vitro. Differentiation, 73(1), 28–35. https://doi.org/10.1111/j.1432-0436.2005.07301003.x

Hsu, C.-L., & Yen, G.-C. (2007). Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. Journal of Agricultural and Food Chemistry, 55(21), 8404–8410. https://doi.org/10.1021/jf071695r

Indra, M. R., & Widodo, E. (2005). Optimalisasi Proliferasi dan Diferensiasi Sel Adiposit Tikus. Laboratorium Ilmu Faal, FK Univ. Brawijaya, Malang.

Kao, Y. H., Hiipakka, R. A., & Liao, S. (2000). Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology, 141(3), 980–987. https://doi.org/10.1210/endo.141.3.7368

Kuppusamy, U. R., & Das, N. P. (1994). Potentiation of β-adrenoceptor agonist-mediated lipolysis by quercetin and fisetin in isolated rat adipocytes. Biochemical Pharmacology, 47, 521–529. https://doi.org/10.1016/0006-2952(94)90184-8

Lefterova, M. I., Haakonsson, A. K., Lazar, M. A., & Mandrup, S. (2014). PPARγ and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism: TEM, 25(6), 293–302. https://doi.org/10.1016/j.tem.2014.04.001

Lin, J., Della-Fera, M. A., & Baile, C. A. (2005). Green Tea Polyphenol Epigallocatechin Gallate Inhibits Adipogenesis and Induces Apoptosis in 3T3-L1 Adipocytes. Obesity Research, 13(6), 982–990. https://doi.org/10.1038/oby.2005.115

Mochizuki, M., & Hasegawa, N. (2004). Effects of green tea catechin-induced lipolysis on cytosol glycerol content in differentiated 3T3-L1 cells. Phytotherapy Research, 18(11), 945–946. https://doi.org/10.1002/ptr.1580

Moseti, D., Regassa, A., & Kim, W.-K. (2016). Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. International Journal of Molecular Sciences, 17(1). https://doi.org/10.3390/ijms17010124

Négrel, R., & Dani, C. (2001). Cultures of Adipose Precursor Cells and Cells of Clonal Lines from Animal White Adipose Tissue. In Adipose Tissue Protocols (pp. 225–237). Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-231-7:225

Passamonti, S., Terdoslavich, M., Franca, R., Vanzo, A., Tramer, F., Braidot, E., … Vianello, A. (2009). Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. CURRENT DRUG METABOLISM, 10, 369–394. https://doi.org/10.2174/138920009788498950

Pellegrinelli, V., Carobbio, S., & Vidal-Puig, A. (2016). Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 59, 1075–1088. https://doi.org/10.1007/s00125-016-3933-4

Ratnawati, R., Ciptati, & Satuman. (2009). Isolasi EGCG dari Teh Hijau Klon GMB4 Jawa Barat. Laporan Penelitian Program Insentif Riset Dasar. RISTEK Kementerian Negara Riset dan Teknologi.

Ratnawati, R., Indra, M. R., & Satuman. (2008). Efektivitas Epigallocatechins Gallate (EGCG) dari Teh Hijau terhadap PPAR, CEBP, SREBP-1, Adiponectin dan TNF- pada Preadiposit Viseral Manusia secara in Vitro. Laporan Penelitian Program Insentif Riset Dasar. RISTEK Kementerian Negara Riset dan Teknologi.

Rode, H.-J., & Eisel, D. (2008). Apoptosis, Cytotoxicity and Cell Proliferation (4th ed.). Roche Diagnostics GmbH.

Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes & Development, 14(11), 1293–1307.

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. Molecular Cloning: A Laboratory Manual., (Ed. 2). Retrieved from https://www.cabdirect.org/cabdirect/abstract/19901616061

Santangelo, C., Varì, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali Dell’Istituto Superiore Di Sanita, 43(4), 394–405.

Siersbaek, R., Nielsen, R., & Mandrup, S. (2010). PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies. FEBS Letters, 584(15), 3242–3249. https://doi.org/10.1016/j.febslet.2010.06.010

Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, Obesity, and Inflammation [Research article]. https://doi.org/10.1155/2007/95974

Susanti, E., Ciptati, Ratnawati, R., Aulanni’am, & Rudijanto, A. (2015). Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pacific Journal of Tropical Biomedicine, 5(12), 1046–1050. https://doi.org/10.1016/j.apjtb.2015.09.013

Tian, C., Ye, X., Zhang, R., Long, J., Ren, W., Ding, S., … Ying, C. (2013). Correction: Green Tea Polyphenols Reduced Fat Deposits in High Fat-Fed Rats via erk1/2-PPARγ-Adiponectin Pathway. PLoS ONE, 8(9). https://doi.org/10.1371/annotation/83355f31-f12d-4b8e-9310-b60d11e37482

Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: the diverse biology of PPARgamma. Annual Review of Biochemistry, 77, 289–312. https://doi.org/10.1146/annurev.biochem.77.061307.091829

Velayutham, P., Babu, A., & Liu, D. (2008). Green Tea Catechins and Cardiovascular Health: An Update. Current Medicinal Chemistry, 15(18), 1840–1850.




DOI: https://doi.org/10.21776/ub.rjls.2018.005.01.6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.