Antifungal activity of clove (Eugenia caryophyllata) extract against Fusarium oxysporum cutinase enzyme in Tomato (Solanum lycopersicum) from in vitro study

Amalia Khairunnisa', Muhammad Akhid Syib’li, Abdul Latief Abadi

Abstract


Fusarium oxysporum f.sp. lycopersici presents a notable threat to tomato plants due to the hydrolytic activity of its cutinase enzyme, which facilitates the penetration of plant root tissues. Thus, reducing cutinase activity through the application of cloves as inhibitors offers an environmentally friendly alternative to hazardous chemical fungicides, showing great promise in controlling Fusarium wilt disease, particularly by targeting the cutinase enzyme of Fusarium oxysporum. This study involved GC-MS analysis of clove extract, fungal growth and cutinase activity assay using rhodamine-b olive oil media. Hence, this study aims to reveal the potential and mechanism of clove extracts as inhibitors of cutinase enzymes to reduce the penetration of the Fusarium oxysporum pathogen in tomato plants. The result shows that clove extract, containing approximately 20% antifungal compounds primarily eugenol (11% of total peak area), inhibits Fusarium oxysporum growth. It also reduces the hydrolytic activity of cutinase crucial for fungal penetration, evidenced by decreased fluorescence halos in tests with rhodamine-B and olive oil media under UV light after adding 1%, 2%, and 3% clove extract. Further in vivo studies are needed to explore its direct effects as a plant inhibitor.


Keywords


Cutinase; Clove; Fusarium oxysporum; In vitro

Full Text:

PDF

References


Agarwal, J., Shaw, T. W., Schaefer, H. F., & Bocarsly, A. B. (2015). Design of a catalytic active site for electrochemical CO2 reduction with Mn(I)-tricarbonyl species. Inorganic Chemistry, 54(11), 5285–5294. https://doi.org/10.1021/acs.inorgchem.5b00233

Ali, N., Chhetri, B., Dosoky, N., Shari, K., Al-Fahad, A., Wessjohann, L., & Setzer, W. (2017). Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines, 4(2), 17. https://doi.org/10.3390/medicines4020017

Arya, G. C., & Cohen, H. (2022). The Multifaceted Roles of Fungal Cutinases during Infection. Journal of Fungi, 8(199), 2–14.

Boyko, N. N., Zhilyakova, E. T., Pisarev, D. I., Novikov, O. O., Sahaidak-Nikitiuk, R. V., Kuznietsova, V. Y. U., Shpychak, O. S., Tkachev, A. V., Kovalenko, A. M., & Sushchuk, N. A. (2020). A novel method for the extraction of the main compounds from the essential oil of clove buds. Farmacia, 68(1), 170–175. https://doi.org/10.31925/farmacia.2020.1.24

Bruna-Maynou, F. J., Castro, R., Rodríguez-Dodero, M. C., Barroso, C. G., & Durán-Guerrero, E. (2020). Flavored Sherry vinegar with citric notes: Characterization and effect of ultrasound in the maceration of orange peels. Food Research International, 133(October 2019), 109165. https://doi.org/10.1016/j.foodres.2020.109165

Castro, R.D.; Lima, E.O. (2013). Anti-Candida activity and chemical composition of Cinnamomum zeylanicum blume essential oil. Braz. Arch. Biol. Technol, 56: 749–755.

Chen, S., Su, L., Chen, J., & Wu, J. (2013a). Cutinase : Characteristics , preparation , and application. Biotechnology Advances, 31(8), 1754–1767. https://doi.org/10.1016/j.biotechadv.2013.09.005

Chen, S., Su, L., Chen, J., & Wu, J. (2013b). Cutinase: Characteristics, Preparation, and Application. Biotechnology Advances, 31(8), 1754–1767. https://doi.org/10.1016/j.biotechadv.2013.09.005

Degani, O. (2015). Production and Purification of Cutinase from Fusarium oxysporum Using Modified Growth Media and a Specific Cutinase Substrate. https://doi.org/10.4236/abb.2015.64024

Devi, K. P., Nisha, S. A., Sakthivel, R., and Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane, J. Ethnopharmacol., 130: 107-115.

Didehdar, M., Chegini, Z., & Shariati, A. (2022). Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Frontiers in Pharmacology, 1–12. https://doi.org/10.3389/fphar.2022.872127

Elfina, Y., Ali, M., & Aryanti, L. (2015). Uji Beberapa Konsentrasi Ekstrak Tepung Daun Sirih Hutan (Piper aduncum L.) untuk Mengendalikan Penyakit Antraknosa pada Buah Cabai Merah Pasca Panen. Sagu, 14(2), 18–27.

Fatima, Z., & Shahidulla, S. M. (2023). Formulation, Optimization and Evaluation of Hexadecanoic Acid Phytosomal Gel for Anti-Fungal Activity. International Journal of Pharmaceutical Sciences and Research, 14(1), 519. https://doi.org/10.13040/IJPSR.0975-8232.14(1).519-29

Ferioli, F., Giambanelli, E., D’Alessandro, V., & D’Antuono, L. F. (2020). Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype “Aglio Rosso di Sulmona. Food Chemistry, 312, 126086. https://doi.org/10.1016/j.foodchem.2019.126086

Gao, S. S., Zhao, I. S., Duffin, S., Duangthip, D., Lo, E. C. M., & Chu, C. H. (2018). Revitalising silver nitrate for caries management. International journal of environmental research and public health, 15(1), 80.

Geoffry, K., & Achur, R. N. (2018). Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, 14, 241–253. https://doi.org/10.1016/j.bcab.2018.03.009

Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. (2018). Investigation of the antifungal activity and mode of action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus essential oils. Molecules, 23: 1116.

Guimarães, A., & Venâncio, A. (2022). The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 14(3), 1–21. https://doi.org/10.3390/toxins14030188

Hanan Aref, H. (2020). Biology and Integrated Control of Tomato Wilt Caused by Fusarium oxysporum lycopersici: A Comprehensive Review under the Light of Recent Advancements. Journal of Botany Research, 3(1). https://doi.org/10.36959/771/565

Jibrin Uttu, A., Sani Sallau, M., Ibrahim, H., & Risikat Agbeke Iyun, O. (2023). In silico modelling and NMR Characterization of some steroids from Strychnos innocua (Delile) root bark as potential antifungal agents. Steroids, 109222. https://doi.org/10.1016/j.steroids.2023.109222

Juszczak, A. M., Zovko-Končić, M., & Tomczyk, M. (2019). Recent trends in the application of chromatographic techniques in the analysis of luteolin and its derivatives. In Biomolecules, Vol. 9, 11. https://doi.org/10.3390/biom9110731

Kaur, K., Kaushal, S., & Rani, R. (2019). Chemical Composition, Antioxidant and Antifungal Potential of Clove (Syzygium aromaticum) Essential Oil, its Major Compound and its Derivatives. Journal of Essential Oil-Bearing Plants, 22(5), 1195–1217. https://doi.org/10.1080/0972060X.2019.1688689

Kaur, L. (2019). A review: top ten fungal pathogens. International Journal of Research and Analytical Reviews, 6(2).

Konappa, N., Udayashankar, A. C., Krishnamurthy, S., Pradeep, C. K., Chowdappa, S., & Jogaiah, S. (2020). GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Scientific Reports, 10(1), 1–23. https://doi.org/10.1038/s41598-020-73442-0

Larranaga, M.D., Lewis, R.J. Sr., Lewis, R.A. (2016). Hawley's Condensed Chemical Dictionary 16th Edition. John Wiley & Sons, Inc. Hoboken, NJ: 893.

Lee, D. H., Lee, M. W., Cho, S. Bin, Hwang, K., & Park, I. K. (2023). Antifungal mode of action of bay, allspice, and ajowan essential oils and their constituents against Colletotrichum gloeosporioides via overproduction of reactive oxygen species and downregulation of ergosterol biosynthetic genes. Industrial Crops and Products, 197(March), 116684. https://doi.org/10.1016/j.indcrop.2023.116684

Liang, X., & Zou, H. (2022). Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology. SynBio, 1(1), 54–64. https://doi.org/10.3390/synbio1010004

Lončar, M., Gašo-Sokač, D., & Molnar, M. (2023). Coumarin derivatives as antifungal agents – A review. Czech Journal of Food Sciences, 41(2), 79–91. https://doi.org/10.17221/178/2021-CJFS

Misbah, A., Aouine, M., Raouan, S. E., Lekbach, Y., Ettadili, H., Koraichi, S. I., & Tahri Jouti, M. A. (2019). Microorganisms Isolated from Moroccan Olive-Mill Wastes: Screening of Their Enzymatic Activities for Biotechnological Use. European Scientific Journal ESJ, 15(30). https://doi.org/10.19044/esj.2019.v15n30p464

Muñoz Castellanos, L., Amaya Olivas, N., Ayala-Soto, J., De La O Contreras, C. M., Zermeño Ortega, M., Sandoval Salas, F., & Hernández-Ochoa, L. (2020). In Vitro and in Vivo Antifungal Activity of Clove (Eugenia caryophyllata) and Pepper (Piper nigrum L.) Essential Oils and Functional Extracts against Fusarium oxysporum and Aspergillus niger in Tomato (Solanum lycopersicum L.). International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/1702037

Neves-Petersen, M. T., Gryczynski, Z., Lakowicz, J., Fojan, P., Pedersen, S., Petersen, E., & Bjørn Petersen, S. (2009). High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Science, 11(3), 588–600. https://doi.org/10.1110/ps.06002

Nofia, N., Martosudiro, M., & Muhibuddin, A. (2024). Growth Inhibition of Botrytis cinerea Fungus on Strawberry (Fragaria sp.) Using Kaffir Lime (Citrus hystrix) Leaf Essential Oil Emulsion. 7(1), 118–127.

Ouertani, A., Neifar, M., Ouertani, R., Masmoudi, A. S., & Cherif, A. (2019). Effectiveness of enzyme inhibitors in biomedicine and pharmacotherapy. Advances in Tissue Engineering & Regenerative Medicine, 5(2). https://doi.org/10.15406/atroa.2019.05.00104

Prakash, P. Y., & Bhargava, K. (2016). A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi. Journal of Microbiological Methods, 123, 126–129. https://doi.org/10.1016/j.mimet.2016.02.015

Rocha, A. L. M., Di Pietro, A., Ruiz-Roldán, C., & Roncero, M. I. G. (2008). Ctf1, a transcriptional activator of cutinase and lipase genes in Fusarium oxysporum is dispensable for virulence. Molecular Plant Pathology, 9(3), 293–304. https://doi.org/10.1111/j.1364-3703.2007.00463.x

Ruiz-Vásquez, L., Mesia, L. R., Ceferino, H. D. C., Mesia, W. R., Andrés, M. F., Díaz, C. E., & Gonzalez-Coloma, A. (2022). Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants, 11(14). https://doi.org/10.3390/plants11141793

Sharma, A., Rajendran, S., Srivastava, A., Sharma, S., & Kundu, B. (2017). Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 123(3), 308–313. https://doi.org/10.1016/j.jbiosc.2016.09.011

Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B. P., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., & Chandra Nayaka, S. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26(7), 1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002

Tan, W. J., Thanh, T. A. V., Rafael, E. S., Chen, Y. S., & Yeo, F. K. S. (2021). Morphological and molecular characterization of Fusarium spp. associated with Fusarium wilt disease of Piper nigrum L. in Northwestern region of Sarawak. Malaysian Journal of Microbiology, 17(2), 165–177. https://doi.org/10.21161/mjm.200938

Taruna, A., Khairunnisa, A., Dewi, R. R., Hadiwijoyo, E., Yulianah, I., Syib’li, M. A., & Abadi, A. L. (2023). Molecular Docking and In Vitro Study Revealed the Inhibition Mechanism of Cutinase of Fusarium oxsyporum f.sp lycopersici by Natural Compounds of Local Turmeric in Indonesia. Agrivita, 45(3), 554–569. https://doi.org/10.17503/agrivita.v45i3.3966

Uttatree, S., Winayanuwattikun, P., & Charoenpanich, J. (2010). Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Applied Biochemistry and Biotechnology, 162(5), 1362–1376. https://doi.org/10.1007/s12010-010-8928-x

Yao, W., Liu, K., Liu, H., Jiang, Y., Wang, R., & Wang, W. (2021). A Valuable Product of Microbial Cell Factories : Microbial Lipase. 12, 1–16. https://doi.org/10.3389/fmicb.2021.743377

Younesi, H., Darvishnia, M., Bazgir, E., & Chehri, K. (2021). Morphological, molecular and pathogenic characterization of Fusarium spp. associated with chickpea wilt in western Iran. Journal of Plant Protection Research, 61(4), 402–413. https://doi.org/10.24425/jppr.2021.139250




DOI: https://doi.org/10.21776/ub.rjls.2023.010.02.3

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.