Effect of Cinnamaldehyde Addition on Zebrafish (Danio rerio) Eggs Against Streptococcus agalactiae Infection

Asthervina Widyastami Puspitasari, Diana Arfiati, Shao-Yang Hu


In this study, the effect of cinnamaldehyde (CA) towards Streptococcus agalactiae on zebrafish egg were investigated. To obtain the optimal concentration, CA and S. agalactiae were tested by short-term effects assay. Fresh zebrafish egg, CA and S. agalactiae were observed in different groups, single and mix treatment. The result showed that the larval survival rate (%) of single CA concentration (2.5 and 5 µg mL-1) were not significantly different compared to the control, with the value 94 ± 2.8% and 93 ± 3.3% respectively. Meanwhile, the single S. agalactiae concentration (109 and 1010 CFU mL-1) were significantly different in comparison to the control with the value 73 ± 2.1% and 6 ± 2.5%. Mix groups, larval survival rate (%) value were significantly different with the best combination value was 17 ± 4.7% at 5 µg mL-1 of CA and 109 CFU mL-1 of S. agalactiae. Even though CA may potential for zebrafish egg shelter against S. agalactiae infection. But a mixture (CA and S. agalactiae) treatments were not recommended for this study because the low value was shown compared to the single treatments. This possibility may occur because of the debris formation of two substances which leads to the poor environment and causes to low fish larval survival rate (%) value. For further study, the water quality assay is needed.


Cinnamaldehyde; Streptococcus agalactiae; Zebrafish egg

Full Text:



Ali, S. M., Khan, A. A., Ahmed, I., Musaddiq, M., Ahmed, K. S., Polasa, H., Ahmed, N. (2005). Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Annals of clinical microbiology and antimicrobials, 4 (1), 20.

Amal, M., Zamri‐Saad, M., Iftikhar, A., Siti‐Zahrah, A., Aziel, S., & Fahmi, S. (2012). An outbreak of Streptococcus agalactiae infection in cage‐cultured golden pompano, Trachinotus blochii (Lacépède), in Malaysia. Journal of fish diseases, 35 (11), 849-852.

Azad, I., Al-Marzouk, A., James, C., Almatar, S., Al-Gharabally, H., & Qasem, J. (2012). Outbreak of natural Streptococcosis in hatchery produced silver pomfret (Pampus argenteus Euphrasen) larvae in Kuwait. Aquaculture, 330, 15-20.

Bagum, N., Monir, M. S., & Khan, M. H. (2013). Present Status of Fish Diseases and Economic Losses Due To Incidence of Disease in Rural Freshwater Aquaculture of Bangladesh. Journal of Innov. Dev. Strategy, 7 (3): 48-53.

Baeck, G. W., Kim, J. H., Gomez, D. K., & Park, S. C. (2006). Isolation and characterization of Streptococcus sp. from diseased flounder (Paralichthys olivaceus) in Jeju Island. Journal of veterinary science, 7 (1), 53-58.

Benard, E. L., van der Sar, A. M., Ellett, F., Lieschke, G. J., Spaink, H. P., & Meijer, A. H. (2012). Infection of zebrafish embryos with intracellular bacterial pathogens. Journal of visualized experiments: JoVE (61).

Bolis, C., Piccolella, M., Dalla Valle, A., & Rankin, J. C. (2001). Fish as model in pharmacological and biological research. Pharmacological research, 44 (4), 265-280.

Bowater, R., Forbes‐Faulkner, J., Anderson, I., Condon, K., Robinson, B., Kong, F., McPherson, G. (2012). Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia. Journal of fish diseases, 35 (3), 173-186.

Chang, P., & Plumb, J. (1996). Effects of salinity on Streptococcus infection of Nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture, 6 (1), 39-45.

Chang, S. -T., Chen, P. -F., & Chang, S. -C. (2001). Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of ethnopharmacology, 77 (1), 123-127.

Chen, M., Li, L. -P., Wang, R., Liang, W. -W., Huang, Y., Li, J., Gan, X. (2012). PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Veterinary microbiology, 159 (3), 526-530.

Costerton, J. (1995). Overview of microbial biofilms. Journal of Industrial Microbiology & Biotechnology, 15 (3), 137-140.

Dahm, R., & Geisler, R. (2006). Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Marine biotechnology, 8 (4), 329-345.

Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current opinion in microbiology, 14 (3), 251-258.

Evans, J., Klesius, P., Gilbert, P., Shoemaker, C., Al Sarawi, M., Landsberg, J., Al Zenki, S. (2002). Characterization of β‐haemolytic Group B Streptococcus agalactiae in cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day), in Kuwait. Journal of fish diseases, 25 (9), 505-513.

Fang, S. -H., Rao, Y. K., & Tzeng, Y. -M. (2004). Cytotoxic effect of trans-cinnamaldehyde from Cinnamomum osmophloeum leaves on Human cancer cell lines. International Journal of Applied Science and Engineering, 2 (2), 136-147.

Garcia, J. C., Klesius, P. H., Evans, J. J., & Shoemaker, C. A. (2008). Non-infectivity of cattle Streptococcus agalactiae in Nile tilapia, Oreochromis niloticus and channel catfish, Ictalurus punctatus. Aquaculture, 281 (1), 151-154.

Guisande, C., Riveiro, I., Sola, A., Valdes, L. (1998). Effect of biotic and abiotic factors on the biochemical compositon of wild eggs and larvae of several fish sprecies. Marine Ecology Progress Series. Vol. 163: 53-61.

Hansen, G. H., & Olafsen, J. A. (1989). Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Applied and Environmental Microbiology, 55 (6), 1435-1446.

Kaur, K., & Toor, H. (1980). Role of abiotic factors in the embryonic development of scale carp. Paper presented at the Proc. Indian Nat. Sci. Acad. B.

Kjørsvik, E., Mangor-Jensen, A., & Holmefjord, I. (1990). Egg quality in fishes. Advances in Marine biology, 26, 71-113.

Lee, H. -S. (2002). Inhibitory activity of Cinnamomum cassia bark-derived component against rat lens aldose reductase. J Pharm Pharm Sci, 5 (3), 226-230.

Mian, G., Godoy, D., Leal, C., Yuhara, T., Costa, G., & Figueiredo, H. (2009). Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Veterinary microbiology, 136 (1), 180-183.

Moşneang, C. L., Dumitrescu, E., Muselin, F., Ciulan, V., Grozea, A., & Cristina, R. T. (2015). Use of Zebra Fish Eggs as Early Indicators of Aquatic Environmental Pollution. Polish Journal of Environmental Studies, 24 (5).

Nabavi, S. F., Di Lorenzo, A., Izadi, M., Sobarzo-Sánchez, E., Daglia, M., & Nabavi, S. M. (2015). Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients, 7 (9), 7729-7748.

National Research Council. (1993). Pesticides in the Diets of Infants and Children. Board on Agriculture and Board on Environmental Studies and Toxicology. National Academy Press. Washigton D. C.

Naveed, R., Hussain, I., Tawab, A., Tariq, M., Rahman, M., Hameed, S., Iqbal, M. (2013). Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC complementary and alternative medicine, 13 (1), 265.

Olivares‐Fuster, O., Klesius, P., Evans, J., & Arias, C. (2008). Molecular typing of Streptococcus agalactiae isolates from fish. Journal of fish diseases, 31 (4), 277-283.

Otto, M. (2014). Physical stress and bacterial colonization. FEMS microbiology reviews, 38 (6), 1250-1270.

Rahman, Md. A., Rahman, Md. H., Yeasmin, S. M., Al-Asif, A., Mridha, D. (2017). Identification of Causative Agent for Fungal Infection and Effect of Disinfectants on Hatching and Survival Rate of Bata (Labeo. Bata) Larvae. Adv Plants Agric Res, 7 (4): 00264.

Rieger, K. A., & Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydrate polymers, 113, 561-568.

Satya, N., Prakash, D. S., & Meena, V. (2012). Purification of cinnamaldehyde from cinnamon species by column chromatography. Int. Res. J. Biol. Sci, 1, 49-51.

Silva, MT., do Vale, A., dos Santos, NM. (2008). Fish and apoptosis: studies in disease and pharmaceutical design. Current pharmaceutical design, 14 (2), 170-183.

Situmorang, M. L., Dierckens, K., Mlingi, F. T., Van Delsen, B., & Bossier, P. (2014). Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae. Diseases of aquatic organisms, 109 (1), 23-33.

Ye, X., Li, J., Lu, M., Deng, G., Jiang, X., Tian, Y., Jian, Q. (2011). Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fisheries Science, 77 (4), 623-632.

Yeasmin, S. M., Rahman, M. A., Hossain, M. M. M., Rahman, M. H., & Al Asif, A. (2016). Identification of causative agent for fungal infection and effect of disinfectants on hatching and survival rate of common carp (C. carpio) larvae. Asian Journal of Medical and Biological Research, 1 (3), 578-588.

Yisa, T., Tsadu, S., Aidoo, T., Ibrahim, A., Gana, E., & Adama, B.S. (2014). Effect of chemical disinfectant (formalin) on hatching of eggs of African Catfish (Clarias gariepinus), survival and growth performance of fry. International Journal of Current Microbiology and Applied Science, 3, 1133-1138.

Yoshimizu, M., Kimura, T., and Sakai, M. (1980). Microflora of the embryo and the fry of salmonids. Bull. Jpn. Soc. Sci. Fish. 46, 967-975.

Youn, H. S., Lee, J. K., Choi, Y. J., Saitoh, S. I., Miyake, K., Hwang, D. H., & Lee, J. Y. (2008). Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochemical pharmacology, 75 (2), 494-502.

Zawada, A., Polechoński, R., & Bronowska, A. (2014). Iodine disinfection of sea trout, Salmo trutta (L.), eggs and the affect on egg surfaces. Archives of Polish Fisheries, 22 (2), 121-126.

DOI: https://doi.org/10.21776/ub.rjls.2017.004.03.5


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.