Physalis minima Leaves Extract Induces Re-Endothelialization in Deoxycorticosterone Acetate-Salt-Induced Endothelial Dysfunction in Rats

Dian Nugrahenny, Nur Permatasari, Mohammad Saifur Rohman


The administration of deoxy-corticosterone acetate (DOCA)-salt can induce oxidative stress leading to decrease the bioavailability of nitric oxide (NO), increase senescence of circulating endothelial progenitor cells (EPCs), thus contributing to endothelial dysfunction. This study was aimed to investigate the effects of Physalis minima L. leaves extract on serum NO levels, circulating EPCs number, and histopathology of tail artery endothelial cells in DOCA-salt-induced endothelial dysfunction in rats. Twenty-five male Wistar rats were randomly divided into five groups: rats without any treatment (normal), rats treated with DOCA (10 mg/kgBW s.c. twice weekly) and given 0.9% NaCl to drink ad libitum for 6 weeks, and DOCA-salt-induced rats orally supplemented with P. minima leaves extract at doses of 500, 1500, or 2500 mg/kgBW for 4 weeks. Serum NO levels were measured by colorimetry. The number of circulating EPCs (CD34+/CD133+ cells) was determined by flow cytometry. The tail artery sections were histologically processed with hematoxylin-eosin staining. DOCA-salt-induced rats showed significantly (p<0.05) decrease in serum NO levels and circulating EPCs number compared to the normal. There was also more detached tail artery endothelial cells in DOCA-salt-induced rats. P. minima leaves extract at a dose of 500 mg/kgBW significantly (p<0.05) increased serum NO level and circulating EPCs number, and also induced an optimal re-endothelialization in DOCA-salt-induced rats. P. minima leave extract dose-dependently increases NO bioavailability contributing to enhanced EPCs mobilization, thereby promoting re-endothelialization in DOCA-salt-induced endothelial dysfunction in rats.


Physalis minima; DOCA-salt-induced rats; Re-endothelialization; Nitric oxide; Endothelial progenitor cells

Full Text:



Aicher A., Heeschen C., Mildner-Rihm C., Urbich C., Ihling C., Technau-Ihling K. et al. 2003. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine 9: 1370-76. doi: 10.1038/nm948.

Bais S. K., Shrirao S. G., Shende G., Kochar N. I., Jiddewar A., and Chandewar A.V. 2012. Evaluation of effects of rutin on oxidative stress in diabetic rat. International Journal of Pharmacy and Pharmaceutical Sciences Volume 4 (Suppl 5): 140-145.

Bankar G. R., Nayak P. G., Bansal P., Paul P., Pai K. S., Singla R. K. et al. 2011. Vasorelaxant and antihypertensive effect of Cocos nucifera Linn. endocarp on isolated rat thoracic aorta and DOCA salt-induced hypertensive rats. Journal of Ethnopharmacol 134 (1): 50-54.

Ceriello A. 2008. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 31 (Suppl 2): S181-S184. Supplement_2/S181.

Chen D. D, Dong Y. G., Yuan H., and Chen A. F. 2012. Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension; 59: 1037-43.

Chothani D. L. and Vaghasiya H. U. 2012. A phytopharmacological overview on Physalis minima Linn. Indian Journal of Natural Products and Resources Volume 3 (4): 477-82.

Deanfield J. E., Halcox J. P., Rabelink T. J. 2007. Endothelial function and dysfunction: testing and clinical relevance. Circulation; 115: 1285-95.

Du Y. H., Guan Y. Y., Alp N. J., Channon K. M., and Chen A. F. 2008.

Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation; 117: 1045-54.

George A. L, Bangalore-Prakash P., Rajoria S., Suriano R., Shanmugam A., Mittelman A. et al. 2011. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol, 4: 24.

Giannotti G., Doerries C., Mocharla P. S., Mueller M. F., Bahlmann F. H., Horvàth T. et al. 2010. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension; 55 (6): 1389-97.

Hill J. M., Zalos G., Halcox J. P., Schenke W. H., Waclawiw M. A., Quyyumi A. A. et al. 2003. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med; 13: 593-600. DOI: 10.1056/NEJMoa 022287.

Imenshahidi M., Hosseinzadeh H., and Javadpour Y. 2010. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res; 24: 990-94.;jsessionid=F80425084603EF20B17C0E1585C6CD02.f03t03.

Iwashima F, Yoshimoto T, Minami I, Sakurada M, Hirono Y, and Hirata Y. 2008. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology; 149: 1009-14.

Kar S. and Kavdia M. 2011. Modeling of biopterin-dependent pathways of eNOS for nitric oxide & superoxide production. Free Radic Biol Med; 51 (7): 1411-27.

Karpagasundari C. and Kulothungan S. 2014. Free radical scavenging activity of Physalis minima Linn. leaf extract (PMLE). JMPS; 2 (4): 59-64.

Kearney P. M., Whelton M., Reynolds K., Muntner P., Whelton P. K., and He J. 2005. Global burden of hypertension: analysis of worldwide data. Lancet; 365 (9455): 217-23.

Liu X., Zhang G. X., Zhang X. Y., Xia W. H., Yang Z., Su C. et al. 2013. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol; 168: 3317-26. article/pii/S0167527313006256.

Minuz P., Patrignani P., Gaino S., Degan M., Menapace L., Tommasoli R. et al. 2002. Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation; 106: 2800-05.

Muhamad bin Zakaria and Mustafa Ali Mohd. 2010. Traditional Malay Medicinal Plants. Kuala Lumpur: Institut Terjemahan Negara Malaysia.

Olives C., Myerson R., Mokdad A. H., Murray C. J. L., Lim S. S. 2013. Prevalence, awareness, treatment, and control of hypertension in United States counties, 2001–2009. PLoS ONE; 8 (4): e60308. doi: 10.1371/journal.pone.0060308.

Saeed A. A., Al-Hamdan N. A., Bahnassy A. A., Abdalla A. M., Abbas M. A. F., and Abuzaid L. Z. 2011. Prevalence, awareness, treatment, and control of hypertension among Saudi adult population: a national survey. Int J Hypertens, Vol. 2011, Article ID 174135, 8 pages. https://www.ncbi.

Seifi B., Kadkhodaee M., Karimian S. M., Zahmatkesh M., Xu J., and Soleimani M. 2010. Evaluation of renal oxidative stress in the development of DOCA-salt-induced hypertension and its renal damage. Clin Exp Hypertens; 32: 90-97.

Setiawan B., Darsuni A., Muttaqien F., Adiputro D. L., Kania N., Nugrahenny D. et al. 2013. The effects of combined particulate matter 10 coal dust exposure and high-cholesterol diet on lipid profiles, endothelial damage, and hematopoietic stem cells in rats. J Exp Integr Med; 3 (3): 219-23.

Thuillez C. and Richard V. 2005. Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens; 19: S21-S25.

Thum T., Fraccarollo D., Schultheiss M., Froese S., Galuppo P., Widder J. D. et al. 2007. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes; 56: 666-74.

Tomaschitz A., Pilz S., Ritz E., Pietsch B., and Pieber T. R. 2010. Aldosterone and arterial hypertension. Nat Rev Endocrinol; 6: 83-93.

Tu K., Chen Z., and Lipscombe L. 2008. Prevalence and incidence of hypertension from 1995 to 2005: a population-based study. CMAJ; 178 (11): 1429-35. https://www.ncbi.

Vasquez-Vivar J., Martasek P., Whitsett J., Joseph J., and Kalyanaraman B. 2002. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogs controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J; 362: 733-39.

Xie H. H., Du Y. H., Channon K. M., and Chen A. F. 2008. BH4 protects endothelial progenitor cell number and function via suppressing thrombospondin-1 expression in salt-sensitive hypertension. FASEB J; 22 (1, Suppl 964. 8).

Yuwono A., Permatasari N., Nugrahenny D., Sargowo D., Rudijsanto A., and Soeatmadji D. W. 2013. Caspase-3 expression and cell morphology of early endothelial progenitor cells exposed to N-epsilon-carboxymethyl lysine. Oxid Antioxid Med Sci; 2 (2): 119-24.

Zhang X. Y., Su C., Cao Z., Xu S. Y., Xia W.H, Xie W. L. et al. 2014. CXCR7 upregulation is required for early endothelial progenitor cell–mediated endothelial repair in patients with hypertension. Hypertension; 63: 383-89.

Zhou Y., Luo P., and Chang H. H. 2008. Clofibrate attenuates blood pressure and sodium retention in DOCA-salt hypertension. Kidney Int;74:1040-48. pmc/articles/PMC2586931/.

Zhou Z., Peng J., Wang C. J., Li D., Li T. T., Hu C. P. et al. 2010. Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J Hypertens; 28 (5): 931-39. http://insights.ovid. com/pubmed?pmid=20375903.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.